Физика гипотеза: субатомная планетология квантово энергетическая робототехника: физика роботехническая инженерия
Шрифт:
К группе лептонов относятся электрон, мюон, таон, соответствующие им нейтрино, а также их античастицы. Все лептоны имеют спин, равный 1/2 , и, следовательно, являются фермионами, подчиняясь статистике Ферми – Дирака.
Поскольку лептоны в сильных взаимодействиях не участвуют, изотопический спин им не приписывается. Странность лептонов равна нулю.
Элементарным частицам, относящимся к труппе лептонов, приписывают так называемое лептонное число (лептонный заряд) L. Обычно принимают, что L=+1 для лептонов (е–, –, –, e, , ), L=–1
Теперь понятно, почему при распаде нейтральная частица названа антинейтрино, а при распаде – нейтрино. Taк как у электрона и нейтрино L= +1, а у позитрона и антинейтрино L= –1, то закон сохранения лептонного числа выполняется лишь при условии, что антинейтрино возникает вместе с электроном, а нейтрино – с позитроном.
Таблица 1
Основную часть элементарных частиц составляют адроны. К группе адронов относятся пионы, каоны, -мезон, нуклоны, гипероны, а также их античастицы (в таблице 1 приведены не все адроны).
Адронам приписывают барионное число (барионный заряд) В. Адроны с В=0 образуют подгруппу мезонов (пионы, каоны, -мезон), а адроны с В= +1 образуют подгруппу барионов (от греч. «барис» – тяжелый; сюда относятся нуклоны и гипероны). Для лептонов и фотона В=0. Если принять для барионов В=+1, для антибарионов (антинуклоны, автигипероны) В=–1, а для всех остальных частиц В=0, то можно сформулировать закон сохранения барионного числа: в замкнутой системе при всех процессах взаимопревращаемости элементарных частиц барионное число сохраняется.
Из закона сохранения барионного числа следует, что при распаде бариона наряду с другими частицами обязательно образуется барион. Примерами сохранения барионного числа являются реакции (273.1)—(273.5). Барионы имеют спин, равный 1/2 (только спин –– гиперона равен 3/2), т. е. барионы, как и лептоны, являются фермионами.
Странность S для различных частиц подгруппы барионов имеет разные значения (см. табл. 1).
Мезоны имеют спин, равный нулю, и, следовательно, являются бозонами, подчиняясь статистике Бозе – Эйнштейна. Для мезонов лептонные и барионные числа равны нулю. Из подгруппы мезонов только каоны обладают S=+1, а пионы и -мезоны имеют нулевую странность.
Подчеркнем еще раз, что для процессов взаимопревращаемости элементарных частиц, обусловленных сильными взаимодействиями, выполняются все законы сохранения (энергии, импульса, момента импульса, зарядов (электрического, лептонного и барионного), изоспина, странности и четности). В процессах, обусловленных слабыми взаимодействиями, не сохраняются только изоспин, странность и четность.
В последние годы увеличение числа
Поэтому развитие работ по их классификации все время сопровождалось поисками новых, более фундаментальных частиц, которые могли бы служить базисом для построения всех адронов. Гипотеза о существовании таких частиц, названных кварками, была высказана независимо друг от друга (1964) австрийским физиком Дж. Цвейгом (р. 1937) и Гелл-Манном.
Название «кварк» заимствовано из романа ирландского писателя Дж. Джойса «Поминки по Финнегану» (герою снится сон, в котором чайки кричат: «Три кварка для мастера Марка»).
Согласно модели Гелл-Манна – Цвейга, все известные в то время адроны можно было построить, постулировав существование трех типов кварков (и, d, s) и соответствующих антикварков (, , ), если им приписать характеристики, указанные в табл. 2 (в том числе дробные электрические и барионные заряды). Самое удивительное (почти невероятное) свойство кварков связано с их электрическим зарядом, поскольку еще никто не находил частицы с дробным значением элементарного электрического заряда. Спин кварка равен 1/2 , поскольку только из фермионов можно «сконструировать» как фермионы (нечетное число фермионов), так и бозоны (четное число фермионов).
Адроны строятся из кварков следующим образом: мезоны состоят из пары кварк – антикварк, барионы – из трех кварков (антибарион – из трех антикварков). Так, например, пион + имеет кварковую структуру , пион – – , каон К+ – , протон – uud, нейтрон – udd, +– гиперон – uus, 0– гиперон – uds и т. д.
Во избежание трудностей со статистикой (некоторые бариоиы, например –– гиперон, состоят из трех одинаковых кварков (sss), что запрещено принципом Паули) на данном этапе предполагают, что каждый кварк (антикварк) обладает специфической квантовой характеристикой – цветом: «желтым», «синим» и «красным». Тогда, если кварки имеют неодинаковую «окраску», принцип Паули не нарушается.
Углубленное изучение модели Гелл-Манна – Цвейга, а также открытие в 1974 г. истинно нейтрального джей-пси-мезона (J/) массой около 6000me со временем жизни примерно 10–20 с и спином, равным единице, привело к введению нового кварка – так называемого с– кварка и новой сохраняющейся величины – «очарования» (от англ. charm).
Подобно странности и четности, очарование сохраняется в сильных и электромагнитных взаимодействиях, но не сохраняется в слабых. Закон сохранения очарования объясняет относительно долгое время жизни J/-мезона. Основные характеристики с– кварка приведены в табл. 2.
Таблица 2
Частице J/ приписывается кварковая структура сс. Структура называется чармонием – атомоподобная система, напоминающая позитроний (связанная водородоподобная система, состоящая из электрона и позитрона, движущихся вокруг общего центра масс).
Гипотеза. Отферумное строение вселенной и обитателей в ней.