Физика и магия вакуума. Древнее знание прошлых цивилизаций
Шрифт:
Настоящие постулаты позволяют объяснить все отмеченные выше энергетические парадоксы, а также решить многие иные загадки физики. Например, они объясняют природу сил инерции. Вакуум, как иная любая среда, оказывает сопротивление вносимой в него деформации. Это сопротивление проявляется в форме сил трения: любое тело, движущееся в жидкой или газовой среде, деформирует структуру среды, в результате чего возникает ответная реакция среды, которая состоит в торможении тела и исключении таким образом любой деформации. Например, плывущий корабль деформирует водную гладь и создает волны на поверхности воды, а вода создает ответную реакцию в виде сил трения, на преодоление которых приходится тратить энергию. Когда некоторый элементарный объем воды, бывший ранее неподвижным, входит в контакт с корпусом корабля, он всегда начинает двигаться (отбрасывается в сторону), то есть начинает ускоряться.
А теперь представим себе, что наш корабль состоит сплошь из дыр, так что вода свободно проходит сквозь него без всякого взаимодействия с корпусом. В этом случае равномерное движение корабля не сопровождается деформацией водной среды и трение будет отсутствовать. Именно такая ситуация имеет место в случае вакуума. Физический вакуум отличается от материальных сред тем, что он деформируется лишь неравномерным движением материального тела (точнее, неравномерным движением поля, порождаемого данным телом), в то время как обычные среды деформируются любым движением.
Когда мы заставляем тело двигаться ускоренно, мы тем самым деформируем структуру вакуума. В качестве ответной реакции вакуум порождает силы инерции, стремящиеся нейтрализовать источник деформации. Для преодоления сопротивления вакуума мы должны затратить определенную энергию и произвести работу над ним. Таким образом, при ускоренном движении любого материального тела мы увеличиваем энергию вакуума. Например, когда мы сидим в автомобиле и давим на педаль газа, мы начинаем двигаться ускоренно, и тем самым деформируем структуру вакуума. В ответ он создает силы инерции, стремящиеся остановить сам автомобиль и все, что в нем находится, чтобы исключить любую деформацию, и нас по инерции отбрасывает назад. Для преодоления сопротивления вакуума и трения колес о землю нужно тратить много энергии, что проявляется в повышенном расходе топлива. Дальнейшее равномерное движение не влияет на вакуум и он в ответ не создает сил сопротивления. Поэтому остается только трение колес о землю, которое намного меньше. Вот почему для равномерного движения автомобиля требуется намного меньше топлива, чем на его разгон.
При замедленном движении мы убираем из вакуума ту деформацию, которую внесли в него раньше на стадии ускоренного движения. Как следствие, вакуум отдает часть своей энергии. Но вследствие того, что сам вакуум содержит огромное количество первичной энергии, не связанной с нашей работой над ним, он может отдать больше энергии, чем получил на стадии ускоренного движения тела. Вот откуда получается тот избыток энергии, который был получен учеными при столкновении железной болванки с металлической плитой: при ускорении снаряда в стволе пушки мы совершаем работу над окружающим нас физическим вакуумом и сообщаем ему некоторую энергию, а при последующем соударении снаряда с мишенью из вакуума выделяется та энергия, которую мы в него внесли, плюс некоторый добавок, зависящий от условий торможения.
При замедленном движении тела силы инерции также возникают, т. к. в вакуум вносится новая деформация: деформация той деформации, которая была внесена в него на стадии ускорения. Снова можно привести пример с автомобилем. Когда мы давим на тормоз, нас по инерции бросает вперед. Так происходит по той причине, что при торможении мы движемся замедленно, то есть снова деформируем вакуум. И он в ответ создает силы инерции, которые тянут нас вперед, чтобы оставить в состоянии равномерного прямолинейного движения и тем самым исключить новую деформацию. Но теперь уже не мы совершаем работу над вакуумом, а он над нами. Вакуум отдает нам свою энергию, которая выделяется в виде тепла в тормозных колодках автомобиля. Такое ускоренно-равномерно-замедленное движение является не чем иным, как единичным тактом колебания огромной амплитуды и низкой частоты.
Движение по окружности также деформирует физвакуум. Хотя численное значение скорости при таком движении может не меняться, зато постоянно меняется положение вектора скорости в пространстве. Поэтому круговое движение (в более общем случае любое движение по изогнутой кривой) деформирует вакуум и, как результат, вакуум порождает реакцию
Теперь можно предложить решение многих отмеченных ранее энергетических парадоксов. Та энергия, которая выделяется в электрической лампочке, печах аэродинамического нагрева, конструкциях моста при его разрушении марширующими солдатами и многих других процессах, выделяется из физического вакуума.
Во всех перечисленных феноменах мы имеем дело с колебаниями, даже если колебания на первый взгляд отсутствуют. Любое колебание — это всегда неравномерное движение, точнее ускоренно-замедленное. В ходе фазы ускоренного движения мы вносим в вакуум некоторую энергию. В ходе фазы замедленного движения он отдает энергию обратно и может отдать ее гораздо больше, т. к. изначально имеет огромное количество энергии. Насколько больше — зависит от величины деформации: чем больше деформация, тем больше выброс энергии из вакуума.
Например, в печах аэродинамического нагрева воздух вначале ускоряется пропеллером и на этой стадии мы вносим в вакуум некоторую энергию. Затем воздух отбрасывается пропеллером на стенки камеры и здесь он движется, если можно так выразиться, дважды неравномерно: во-первых, падает его скорость, во-вторых, постоянно меняется вектор скорости. Как следствие, вакуум отдает очень много энергии. В данном случае колебание происходит на макроуровне и характеризуется низкой частотой и большой амплитудой, поэтому оно не воспринимается как собственно колебание.
В случае с электрической лампочкой надо обратить внимание на тот факт, что в цепи обязательно должен присутствовать электрогенератор, без которого никакой ток по проводам не пойдет. Даже если лампочка горит от батареи, эта батарея все равно заряжалась от генератора. Когда мы сжигаем горючее вещество (уголь, нефть или газ на электростанции), тепловая энергия данного вещества преобразуется не в энергию электрического тока, а в энергию вакуума. Ротор электрогенератора при вращении создает центробежную силу, следовательно, он деформирует физвакуум и совершает над ним работу. Эта работа производится за счет тепловой энергии сгораемого вещества. Затем, когда электроны входят в электрическую лампочку, они заставляют атомы вещества нити накаливания колебаться более интенсивно, чем обычно (примерно также, как колеблются конструкции моста при марширующем шаге солдатской колонны), и в результате этого из вакуума выделяется энергия, заставляющая нить накаливания светиться. Так как и свет и физвакуум являются разновидностями материи, тогда исчезает противоречие появления одной формы материи из пустоты. В этом примере энергия электрического тока служит в качестве инструмента для высвобождения вакуумной энергии, но сама она в лампочке и других электроприборах не расходуется.
Однако инструмент можно заменить. И однажды это сделал знаменитый физик Никола Тесла в его эксперименте передачи электрической энергии по одному проводу (а в наше время этот опыт повторил некто Авраменко). Схема установки Николы Тесла была такова: трансформатор тока первичной обмоткой подключался к источнику питания, один конец его вторичной обмотки просто болтался в воздухе, а второй конец тянулся в соседнее помещение, где к нему подсоединяли мостик из четырех диодов с лампой посередине. И при включении источника питания лампа загоралась. Но ведь в соседнее помешение тянулся всего один провод, а второго провода как такового не существовало. К тому же, как отмечалось не один раз в описаниях этого опыта, провод совершенно не нагревался. Его можно было делать из металлов самой низкой проводимости и сверхмалого диаметра, но провод всегда оставался холодным. Поэтому иногда можно услышать из уст поклонников сербского гения, будто в данном эксперименте впервые была получена сверхпроводимость при комнатной температуре. Теперь наше объяснение этому феномену.