Физика времени
Шрифт:
Но тогда должен действовать эффект Доплера, о котором мы говорили в главе 6. Раз свет догонял удаляющийся приемник, значит, период и длина волны зарегистрированною света должны быть больше, чем период и длина волны, которые свет имел в момент выхода из источника. Свет испытывает красное смещение — таков результат нашего опыта.
Представим себе, что с этом мысленном эксперименте лифт двигался вверх с ускорением, равным земному ускорению свободного падения, так что в лифте имитировалось земное тяготение. Тогда ясно, что в лаборатории, покоящейся на Земле, подобный эксперимент приведет — согласно принципу эквивалентности — к тому же результату: свет, распространяясь снизу вверх, испытает красное смещение. Никакого движения приемника
Замедление времени
Для физики безразлично, было ли тяготение естественным или искусственным, все физические явления происходят в обоих рассмотренных нами случаях одинаково. Но проще всего было найти интересующий нас эффект в опыте с искусственной гравитацией: мы смогли применить там сведения, с которыми уже познакомились ранее по совсем другим примерам.
Чему же научил нас этот опыт? Мы узнали, что колебания в световой волне изменяют свой ритм при ее распространении в поле тяготения. Если, как в нашем опыте, свет движется против направления силы тяжести, ритм колебаний замедляется. Сила тяготения оказывает на него замедляющее действие. Это означает, что если мы сделаем часы, «работающие» на таких колебаниях, то их тиканье будет реже в поле тяготения. Но часы указывают нам время и потому приходится заключить, что сила тяготения замедляет сам темп протекания времени.
Если с потолка лаборатории посмотреть на часы, стоящие на ее полу, то увидим, что эти часы отстают от наших собственных часов на потолке. Внизу время течет медленнее, чем наверху. Из двух братьев-близнецов, живущих в одном доме на разных этажах, быстрее растет тот, который ближе к крыше. Разница, конечно, очень небольшая, но важно, что она есть и даже может быть измерена.
Об измерении замедления времени мы расскажем чуть позже, а сейчас снова вернемся ненадолго к только что проделанному мысленному эксперименту.
Легко представить себе, что будет, если свет посылать не с пола на потолок, а, наоборот, с потолка на пол. Должен измениться знак эффекта: свет, распространяющийся по направлению силы тяготения, должен становиться более голубым. Вместо увеличения периода света и замедления ритма его колебаний получим уменьшение периода и ускорение ритма. Если снизу смотреть на часы, находящиеся на потолке, то они будут уходить вперед по сравнению с нашими собственными часами на полу. Но это снова означает, что внизу часы идут медленнее, чем наверху.
Замедление времени в поле тяготения — одно из замечательных следствий общей теории относительности. Мы узнали о нем из мысленных экспериментов, в которых для простоты считали силу тяготения и ускорение постоянными по высоте. Это вполне приемлемое приближение для условий на поверхности Земли, когда высота, на которой находятся часы, считается малой — по сравнению с радиусом Земли. Но в действи-
тельности эффект остается в силе и тогда, когда высота не мала и нужно учитывать, что сила тяготения не постоянна, а убывает обратно пропорционально квадрату расстояния. И в этом случае часы идут тем медленнее, чем ближе они к поверхности тела. Всякий раз из двух часов, находящихся на разных расстояниях от тяготеющего тела, быстрее идут те, ко- которые дальше от этого тела. На очень далекие часы тяготение уже не оказывает практически никакого действия, и там они, а с ними и время, достигают самого высокого своего ритма.
Измерение
Прямой лабораторный, а не мысленный эксперимент с замедлением времени
*) Она получается так: нужно взять разность потенциалов поля тяготения на пути, пройденном светом, и разделить на квадрат скорости света и затем перейти к процентам, умножив это отношение на 100.
В эксперименте нужно было зафиксировать очень малый сдвиг длины волны излучения, сдвиг, который и оценивается величиной 3 • 10– 13 процента. И тем не менее такой сдвиг длины волны, а с ним и эффект замедления времени, оказался измеренным. Это было сделано с помощью специальных сверхточных приборов (игравших роль часов), основанных на так называемом эффекте Мёссбауэра — явлении испускания твердыми телами гамма-излучения необычайно строго фиксированной длины волны.
Эксперимент обнаружил эффект гравитационного красного смещения, или замедления времени, в поле тяготения. Со всей экспериментальной точностью **) подтвердилась и его численная величина, предсказываемая теорией.
**) Возможная погрешность не превышала десяти процентов от измеряемой величины.
Это было одно из самых тонких и искусных измерений в современной экспериментальной физике.
Позднее, в 1976 году, эксперимент повторили — с гораздо более высокой точностью — физики Смитсоновского института (США). У них свет проходил 160 километров по высоте — аппаратура была вынесена на эту высоту ракетой. Для такой высоты, или, точнее, для такого перепада высот между источником и приемником, замедление времени в семь с лишним тысяч раз больше, чем в гарвардском эксперименте, что точно соответствует отношению высот.
Астрономический эксперимент
Самая первая попытка обнаружить эффект гравитационного замедления времени была сделана еще в 20-е годы — не в лаборатории, а по астрономическим наблюдениям. Свет, двигаясь к нам от Солнца или какой-либо звезды, распространяется, очевидно, против силы тяготения, создаваемой Солнцем или этой звездой, и потому должен испытывать гравитационное красное смещение, указывающее на то, что время вблизи Солнца или звезды течет медленнее.
Для света Солнца эффект приблизительно в миллиард раз сильнее, чем в лабораторном эксперименте гарвардских фи- физиков. И сам по себе он был бы вполне измерим, если бы не побочные неблагоприятные обстоятельства - например, движение газа в солнечной атмосфере, которые маскируют гравитационное красное смещение.
В последние годы гравитационное красное смещение искали в свете самых плотных из известных сейчас звезд - белых карликов и нейтронных звезд. В ряде успешных попыток эффект был обнаружен, и снова его величина оказалась наилучшим образом согласующейся с тем, что предсказывает общая теория относительности.
Интересные космические эксперименты проделаны недавно с помощью радиолокации. Представим себе, что мы посылаем импульс радиоизлучения на планету, когда она находится за Солнцем и, так сказать, выглядывает из-за него. Луч радиоволн пройдет вблизи края солнечного диска, достигнет поверхности планеты, а затем отразится от нее и вернется на Землю, где его приход зарегистрируют. Можно измерить время путешествия сигнала туда и обратно.