Фокусы-покусы квантовой теории
Шрифт:
Вот, посудите сами. Забыв обо всём на свете, физики просто с ума сходили, мучаясь над глупейшими вопросами. Если энергия кванта света зависит только от частоты, то, к примеру, сколько раз должно что-то колебнуться в кванте с этой частотой, чтобы энергия кванта была в точности равна произведению постоянной Планка на эту частоту? Дичь какая-то! А ведь эта дичь ещё передавала свою порцию энергии атому, отчего в нём что-то осциллировало. Только энергия этих осцилляций зависела уже от двух параметров: от частоты и амплитуды. Спрашивается: каким же чудесным образом энергия трепыханий, зависящая только от частоты, превращается в энергию трепыханий, зависящую от частоты и от амплитуды? Вот, с какой амплитудой и сколько раз должен трепыхнуться атом, чтобы отработать поглощённый световой квант?..
Сегодняшние академики этакими вопросами, конечно, не мучаются. «Мы же не дураки, – поясняют они. – Потому и появилась квантовая теория, что перестали работать старые подходы!» Ну, ну. Старые подходы работать перестали, а новые – заработали, что ли? Или шулерство в вопросе о согласии с опытом – это и есть «новые подходы»? Тогда позвольте вас поздравить: рождение
Вообще-то, тогдашние представления об атомах и впрямь были чересчур примитивными: компоновку положительных и отрицательных зарядов приходилось додумывать. Так, пользовалась популярностью модель Томсона, в которой почти вся масса атома и его положительный заряд мыслились распределёнными по некоторому шаровому объёму, а отрицательные электроны мыслились вкраплениями, как «изюм в пудинге». Но вот лаборант Резерфорда обнаружил, что, при обстреле тончайшей фольги альфа-частицами, часть из них отскакивает назад. Такое возможно, если почти вся масса атома сосредоточена в очень малой части его объёма. Отсюда у Резерфорда родилась идея об атомном ядре, которому присуща почти вся масса атома и положительный заряд – а заодно идея о том, что электроны, чтобы не упасть на ядро из-за кулоновского притяжения, должны вокруг него обращаться, будучи удерживаемы центробежными силами.
Как и сейчас, тогда мало кто понимал, что центробежная сила не может действовать на элементарную частицу. Она может действовать лишь на структурное образование из элементарных частиц, возникая из-за радиального градиента их линейных скоростей вращения. А обращение электрона вокруг ядра нисколько не препятствовало бы падению на него. К тому же, непонятно, какие таинственные силы обеспечивали бы восстановление электронных орбит после их возмущений. Вот, для сравнения: спутник на околоземной орбите. В результате небольшого возмущения – например, кратковременного включения двигателя – свободный полёт продолжается уже по новой орбите. Здесь никаких восстанавливающих сил нет. А в атомах они непременно должны быть, потому что атомные конфигурации имеют запас устойчивости. А также – механизм самовосстановления. Об этом свидетельствуют и воспроизводимость размеров атомов, и характеристические атомные спектры излучения-поглощения. И, ведь, самовосстанавливаться есть после чего. Вон, при столкновении пары спутников, запущенных во встречных направлениях и летящих со скоростями в несколько километров в секунду, от них останется мало чего пригодного к употреблению. А орбитальные скорости электронов в атомах, по теоретическим раскладочкам, составляют пару тысяч километров в секунду. Прикиньте-ка, что будет даже при лёгком соприкосновении двух атомов, электроны которых столкнутся своими лобешниками. Ну, допустим, что лобешники у них достаточно железобетонные, так что ошмётки от электронов не полетят. Но ведь их орбитальное движение, как бы, немного нарушится, правда? А теперь вспомните, что в газах, при нормальных условиях, из-за теплового движения атом испытывает примерно миллиард столкновений в секунду. И – ничего, остаётся самим собой. Живучий, стервец! Тут академики попытаются нас образумить – мол, обращение электронов происходит так быстро, что имеет смысл говорить о непроницаемости орбит, из-за которой атомы в газах и отскакивают друг от друга при столкновениях, а электроны разных атомов никак не могут «столкнуться лобешниками». Позвольте, а куда же девается эта непроницаемость орбит, когда атомы, пардон, вступают в химическую связь? Али вы подзабыли, насколько глубоко они при этом проникают друг в друга? Так посмотрите в справочниках: раздел называется «Размеры молекул». Не редкость, что расстояние между центрами атомов в молекуле меньше, чем радиусы самих атомов! Ну, полная гармония: когда хочется, на тебе проницаемость, а когда не хочется, на тебе непроницаемость! И, в чём разница – со стороны совершенно незаметно! Да… такие представления об атомах только и надеялись на ревизию, как на избавление…
Но пришло не избавление, а безысходность пуще прежней. Понимаете, нельзя было ревизию мотивировать тем, что, мол, планетарная модель атома, господа, годится лишь для наивных чукотских девушек. Не дай Бог, кто-нибудь обиделся бы. Поэтому повели такую политику: «Ах, какая она замечательная, планетарная модель! У неё всего один недостаточек! Связанный с излучением электрона, движущегося по орбите! Устранить этот недостаточек – и будет полный ажур!» Это они вот о чём. По классическим представлениям, осцилляции электрона в атоме означали его пребывание в возбуждённом состоянии: при поглощении электромагнитной энергии эти осцилляции «раскачивались», а, предоставленные самим себе, затухали – но при этом запасённая электромагнитная энергия излучалась. Теперь, смотрите-ка: что такое орбитальное движение электрона в планетарной модели? Да не что иное, как его двумерные осцилляции! Никто отчего-то не пояснял, откуда это орбитальное движение бралось – кто это так удачно давал электрону пинка нужной силы и в нужном направлении. Но все сходились в том, что, выйдя на атомную орбиту после этого удачного пинка, предоставленный самому себе электрон начал бы терять энергию на излучение. И очень быстро потерял бы её всю, за несколько оборотов упав на ядро. Выходила нелепица: атомы, мол, долго жить не должны, а они живут. Вот, мол, в какой тупик заводят классические представления при умелом пользовании! Ищи, мол, теперича выход из этого тупика!
Тут-то опять и сработал квантовый подход, на основе которого Бор предложил на редкость блистательный выход. Учитесь, студенты: если проблема связана с излучением движущегося по орбите электрона, то эта проблема устраняется простеньким постулатом о том, что движущийся по орбите электрон не излучает. Делов-то,
Стойте, стойте! Позвольте вам напомнить, что в гипотезе Планка квант имеет физический параметр – частоту. Только этой частотой и определяется величина порции энергии. И, вот – оп-ля! – эта порция энергии поглотилась атомом, отчего его электрон сиганул на более высокую орбиту. Спрашивается: что же при этом колебнулось в атоме с частотой кванта? Ответ на этот вопрос искали долго, до мелькания чёртиков в глазах, так что можно с полной определённостью сказать: ничего там, в атоме, с частотою планковского кванта не колеблется. Так-так. Вот, значит, о чём вы умалчиваете, любезные! Значит, когда планковская порция энергии находится в атоме, то её величина определяется вовсе не частотой?! Это называется – согласие с гипотезой Планка? Вы ещё скажите, что при поглощении кванта атомом, энергия кванта банально превращается в прирост энергии орбитального движения электрона – так что от бывшей частоты кванта остаётся одно воспоминание. Ладно, но тогда каким макаром возобновляются трепыхания на той самой частоте при обратном процессе – когда квант излучается? Может, в атомах имеются портативные аналого-цифровые преобразователи? Валяйте, не стесняйтесь!
Тут академики опять попытаются поставить нас на место – мол, отчего это автор делает акценты на какой-то ерунде-мелочёвке, когда главное содержание постулатов Бора совсем другое! Это оттого, чтобы вас подготовить. Перед тем, как сделать акцент на главном содержании. Оно ведь сводится к чему? К тому, что атом может поглотить и излучить только резонансные порции энергии, которые равны разностям энергий движения электрона на тех самых, стационарных боровских орбитах. Это и есть «главное содержание» - центральный догмат квантовой теории. Как можно было дойти до жизни такой? Ведь у атомов различных химических элементов различны и системы стационарных орбит, а, значит, и соответствующих квантовых уровней энергии, а, значит, и разностей между ними. Тогда из центрального догмата следует, что без специальных мер, сдвигающих или уширяющих квантовые уровни, излучённый атомом одного элемента квант не может быть поглощён атомом другого элемента. Ей-богу, в такой ситуации даже этой троице – двум атомам и одному кванту – стало бы не по себе от осознания идиотизма происходящего. «Универсальное взаимодействие», растудыт его, которое оказывается «только для своих»! И нам ещё морочат головы про то, что лазеры появились благодаря квантовой теории?! Не «благодаря», любезные, а «вопреки»: в первых лазерах использовалась широкополосная накачка лампами-вспышками! А это прямое экспериментальное опровержение вашего центрального догмата: резонансное излучение генерируется в результате поглощения нерезонансных квантов накачки, энергия которых больше энергии лазерного перехода! Или вот ещё: облучают вещество заведомо нерезонансным ультрафиолетом, и оно флуоресцировать начинает – на длине волны, в точности соответствующей разности энергии облучения и энергии ближайшего нижерасположенного квантового уровня в этом веществе!
Впрочем, о чём это мы распелись? Теоретики нынче пошли какие-то особенные, закалённые: убийственными опытными фактами их уже не прошибёшь. Чихать они на них хотели. Единственное, что их ещё может пронять, так это убийственное противоречие в обожаемой теории. Ладно, сделаем! Если по-другому – никак. Надо всего лишь сопоставить пару первых же квантовских достижений. То, которое воспевает равновесный спектр – как мы помним, сплошной – и то, которое обязывает атомы поглощать и излучать только резонансные порции энергии, т.е. обязывает их спектры излучения-поглощения быть дискретными… Что же у вас получается, закалённые вы наши? Что атомы не могут быть источниками равновесного излучения?! И не могут участвовать в равновесном радиационном теплообмене?! Но тогда нужно было сразу же объявить термодинамику лженаукой и выкинуть её в специально отведённое место. Отчего же не объявили, не выкинули? Не нашлось, что ли, желающих ручки марать? Э, нет, тут были мотивы более высокоидейные: а ну как специалисты по термодинамике развернулись бы – да хорошенько дали в ответ? Моментально бы прояснилось, что в равновесном радиационном теплообмене атомы непременно участвуют – а как же иначе! И что в специально отведённое место нужно отправлять не термодинамику, а квантовую теорию. Поэтому квантовикам-затейникам, и вправду, лучше было помалкивать. И, при встрече даже с заштатным термодинамщиком, вежливо с ним раскланиваться. Чтобы публика ни о чём таком не догадалась.
И, главное, теперь надо было на каждом углу тарахтеть про постулаты Бора: если на них как следует зациклиться, то кошмар с равновесным сплошным спектром забудется, мол, сам собой. А для пущей важности – давай-ка сюды притягивать за уши опытные свидетельства о том, что кванты световой энергии – это конкретно настоящие частицы. Чтобы никаких сомнений на этот счёт не оставалось, как в случае с фотоэффектом. А то, действительно, стыдно было любимым девушкам в глаза смотреть: облучаешь металлическую пластинку ультрафиолетом, да и вышибаешь оттуда электроны – но каждый такой электрон вышибается так, словно хватанул лишь порцию энергии, но не порцию импульса! Словно его только припекло, но не пнуло! Причём, «не пнуло» - это ещё мягко сказано: фотоэлектроны-то вылетали из освещённой стороны пластинки, т.е. навстречу вышибавшим их квантам. Как это у них так весело получалось, никто из квантовиков объяснить не брался, даже Эйнштейн: его знаменитое уравнение фотоэффекта описывало лишь баланс энергий при вышибании электрона квантом. Этого было мало: хотелось свидетельств о том, что кванты света переносят не только энергию, но и импульс.
Вперед в прошлое 5
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Вперед в прошлое!
1. Вперед в прошлое
Фантастика:
попаданцы
рейтинг книги
Доктора вызывали? или Трудовые будни попаданки
Фантастика:
юмористическая фантастика
попаданцы
рейтинг книги
Отрок (XXI-XII)
Фантастика:
альтернативная история
рейтинг книги
