Чтение онлайн

на главную - закладки

Жанры

Фундаментальные алгоритмы и структуры данных в Delphi

Бакнелл Джулиан М.

Шрифт:

procedure htSaveNode(aBitStream : TtdOutputBitStream;

aNode : integer);

public

constructor Create;

procedure CalcCharDistribution(aStream : TStream);

procedure CalcCodes(var aCodes : THuffmanCodes);

function DecodeNextByte(aBit St ream : TtdInputBitStream): byte;

procedure LoadFromBitStream(aBitStream : TtdInputBitStream);

function RootIsLeaf : boolean;

procedure SaveToBitStream(aBitStream : TtdOutputBitStream);

property Root : integer read FRoot;

end;

Предположим,

что дерево содержит только два типа узлов: внутренние, имеющие ровно по два дочерних узла, и листья, не имеющие узлов (иначе говоря, не существует узлов, имеющих только один дочерний узел, - именно такой вид имеет префиксное дерево). Сколько внутренних узлов имеет это дерево, если оно содержит n листьев? Лемма утверждает, что такое дерево содержит ровно n - 1 внутренних узлов. Это утверждение можно доказать методом индукции. Когда n = 1, лемма явно выполняется, поскольку дерево содержит только корневой узел.

Теперь предположим, что лемма справедлива для всех i < n, где n < 1, и рассмотрим случай, когда i = n. В этом случае дерево должно содержать, по меньшей мере, один внутренний узел - корневой. Этот корневой узел имеет два дочерних дерева: левое и правое. Если левое дочернее дерево имеет x листьев, то, согласно сделанному нами допущению, оно должно содержать x - 1 внутренних узлов, поскольку x < n. Аналогично, согласно сделанному допущению, если правое дочернее дерево имеет y листьев, оно должно содержать y - 1 внутренних узлов. Все дерево содержит n листьев, причем это число должно быть равно X + Y (вспомните, что корневой узел является внутренним). Следовательно, количество внутренних узлов равно (x-1) + (y-1) + 1, что составляет в точности n-1.

Чем же эта лемма может нам помочь? В префиксном дереве все символы должны храниться в листьях. В противном случае было бы невозможно получить однозначные коды. Следовательно, независимо от его внешнего вида, префиксное дерево, подобное дереву Хаффмана, будет содержать не более 511 узлов: не более 256 листьев и не более 255 внутренних узлов. Следовательно, мы должны быть в состоянии реализовать дерево Хаффмана (по крайней мере, обеспечивающее кодирование значений байтов) в виде 511-элементного массива.

Структура узла включает в себя поле счетчика (содержащее значение общего количества появлений символов для самого узла и всех его дочерних узлов), индексы левого и правого дочерних узлов и, наконец, поле, содержащее индекс самого этого узла (эта информация облегчит построение дерева Хаффмана).

Причина выбора типов кода Хаффмана (THuffmanCodeStr и THuffmanCodes) станет понятной после рассмотрения генерации кодов для каждого из символов.

Конструктор Create класса дерева Хаффмана всего лишь выполняет инициализацию внутреннего массива дерева.

Листинг 11.8. Конструирование объекта дерева Хаффмана

constructor THuffmanTree.Create;

var

i : integer;

begin

inherited Create;

FillChar(FTree, sizeof(FTree), 0);

for i := 0 to 510 do

FTree[i].hnIndex := i;

end;

Поскольку конструктор не распределяет никакой памяти, и никакое распределение

памяти не выполняется ни в каком другом объекте класса, явному деструктору нечего делать. Поэтому по умолчанию класс использует метод TObject.Destroy.

Первым методом, вызываемым для дерева Хаффмана в подпрограмме сжатия, был метод CalcCharDistribution. Это метод считывает входной поток, вычисляет количество появлений каждого символа, а затем строит дерево.

Листинг 11.9. Вычисление количеств появлений символов

procedure THuffmanTree.CalcCharDistribution(aStream : TStream);

var

i : integer;

Buffer : PByteArray;

BytesRead : integer;

begin

{считывать все байты с поддержанием счетчиков появлений для каждого значения байта, начиная с начала потока}

aStream.Position := 0;

GetMem(Buffer, HuffmanBufferSize);

try

BytesRead := aStream.Read(Buffer^, HuffmanBufferSize);

while (BytesRead <> 0) do

begin

for i := pred(BytesRead) downto 0 do

inc(FTree[Buffer^[i]].hnCount);

BytesRead := aStream.Read(Buffer^, HuffmanBufferSize);

end;

finally

FreeMem(Buffer, HuffmanBufferSize);

end;

{построить дерево}

htBuild;

end;

Как видно из листинга 11.9, большая часть кода метода вычисляет количества появлений символов и сохраняет эти значения в первых 256 узлах массива. Для повышения эффективности метод обеспечивает поблочное считывание входного потока (прежде чем выполнить цикл вычисления, он распределяет в куче большой блок памяти, а после вычисления освобождает его). И в завершение, в конце подпрограммы вызывается внутренний метод htBuild, выполняющий построение дерева.

Прежде чем изучить реализацию этого важного внутреннего метода, рассмотрим возможную реализацию алгоритма построения дерева. Вспомним, что мы начинаем с создания "пула" узлов, по одному для каждого символа. Мы выбираем два наименьших узла (т.е. два узла с наименьшими значениями счетчиков) и присоединяем их к новому родительскому узлу (устанавливая значение его счетчика равным сумме значений счетчиков его дочерних узлов), а затем помещаем родительский узел обратно в пул. Мы продолжаем этот процесс до тех пор, пока в пуле не останется только один узел. Если вспомнить описанное в главе 9, станет очевидным, какую структуру можно использовать для реализации этого аморфного "пула": очередь по приоритету. Строго говоря, мы должны использовать сортирующее дерево с выбором наименьшего элемента (обычно очередь по приоритету реализуется так, чтобы возвращать наибольший элемент).

Листинг 11.10. Построение дерева Хаффмана

function CompareHuffmanNodes(aData1, aData2 : pointer): integer; far;

var

Node1 : PHuffmanNode absolute aData1;

Node2 : PHuffmanNode absolute aData2;

begin

{ПРИМЕЧАНИЕ: эта подпрограмма сравнения предназначена для реализации очереди по приоритету Хаффмана, которая является *сортирующим деревом с выбором наименьшего элемента*. Поэтому она должна возвращать элементы в порядке, противоположном ожидаемому}

Поделиться:
Популярные книги

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

"Искажающие реальность" Компиляция. Книги 1-14

Атаманов Михаил Александрович
Искажающие реальность
Фантастика:
боевая фантастика
космическая фантастика
киберпанк
рпг
5.00
рейтинг книги
Искажающие реальность Компиляция. Книги 1-14

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Невеста на откуп

Белецкая Наталья
2. Невеста на откуп
Фантастика:
фэнтези
5.83
рейтинг книги
Невеста на откуп

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Аргумент барона Бронина 4

Ковальчук Олег Валентинович
4. Аргумент барона Бронина
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Аргумент барона Бронина 4

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Измена. Право на обман

Арская Арина
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на обман

Бастард Императора. Том 7

Орлов Андрей Юрьевич
7. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 7

Жаба с кошельком

Донцова Дарья
19. Любительница частного сыска Даша Васильева
Детективы:
иронические детективы
8.26
рейтинг книги
Жаба с кошельком

Бастард Императора. Том 11

Орлов Андрей Юрьевич
11. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 11

Академия чаросвет. Тень

Ярошинская Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Академия чаросвет. Тень

Наследие Маозари 4

Панежин Евгений
4. Наследие Маозари
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Наследие Маозари 4