Чтение онлайн

на главную - закладки

Жанры

Фундаментальные алгоритмы и структуры данных в Delphi

Бакнелл Джулиан М.

Шрифт:

Если бы фамилия "Smith" всегда была последним элементом в массиве, последовательный поиск был бы очень медленным. Такая ситуация известна под названием худший случай. В нашем примере ее можно представить как О(n), точно так же, как и для среднего случая.

Несмотря на то что для бинарного поиска быстродействие в лучшем случае (искомый элемент всегда находится в средине массива) равно быстродействию в лучшем случае для последовательного поиска, тем не менее, его быстродействие в худшем случае намного выше. Собранные нами статистические данные при поиске элемента, которого нет в массиве, являются значениями для худшего случая.

В общем, при выборе

алгоритма следует учитывать значения в О-нотации для среднего и худшего случаев. Лучшие случаи, как правило, не интересны, поскольку программисты всегда более обеспокоены "граничными" условиями, по которым и будут судить о быстродействии приложения.

Таким образом, мы увидели, что О-нотация - очень ценное средство оценки быстродействия различных алгоритмов. Кроме того, следует помнить, что О-нотация в общем случае имеет смысл только для больших n. Для небольших n выбор алгоритма лучше осуществлять на основе статистических данных о времени его выполнения. Единственным достоверным методом оценки эффективности алгоритма является определение времени его работы. Поэтому не гадайте, а интенсивно используйте профилировщик.

Алгоритмы и платформы

В обсуждении быстродействия алгоритмов мы до сих пор не затрагивали вопросов, касающихся операционной системы и оборудования компьютера, на котором выполняется реализация алгоритма. О-нотация справедлива только для какой-то виртуальной вычислительной машины, в которой, например, нет никаких узких мест в операционной системе или оборудовании. К сожалению, мы живем и работаем в реальном мире, и наши приложения и алгоритмы будут выполняться на реальных физических компьютерах. Поэтому при анализе алгоритмов следует учитывать и данный фактор.

Виртуальная память и страничная организация памяти

Первым узким местом быстродействия приложения является страничная организация виртуальной памяти. Его легче понять на примере 32-разрядных приложений. 16-разрядные приложения тоже страдают от тех же проблем, но сама механика их возникновения разная. Обратите внимание, что в этом разделе мы будем говорить языком непрофессионалов, - целью раздела является обсуждение концептуальной информации, достаточной для понимания принципов происходящего, а не детальное рассмотрение системы страничной памяти.

При запуске приложения под управлением современной 32-разрядной операционной системы ему для кода и данных предоставляется блок виртуальной памяти, размером 4 Гб. Очевидно, что операционная система не дает физически эти 4 Гб из оперативной памяти (ОЗУ); понятно, что далеко не каждый может себе позволить выделить лишние 4 Гб ОЗУ под каждое приложение. Фактически предоставляется пространство логических адресов, по которым, теоретически, может храниться до 4 Гб данных. Это и есть виртуальная память. На самом деле ее нет, но если мы все делаем правильно, операционная система может предоставить нам физические участки памяти, если возникнет такая необходимость.

Виртуальная память разбита на страницы. В системах Win32 с процессорами Pentium размер одной страницы составляет 4 Кб. Следовательно, Win32 разбивает блок памяти объемом 4 Гб на страницы по 4 Кб. При этом в каждой странице содержится небольшой объем служебной информации о самой странице. (память в операционной системе Linux работает примерно таким же образом.) Здесь содержатся данные о том, занята страница или нет. Занятая страница - это страница, в которой приложение хранит данные, будь то код или реальные данные. Если

страница не занята, ее нет вообще. Любая попытка сослаться на нее вызовет ошибку доступа.

Далее, в служебную информацию входит ссылка на таблицу перевода страниц. В типовой системе с 256 Мб памяти (через несколько лет эта фраза, наверное, будет вызывать смех) доступно только 65536 физических страниц. Таблица трансляции страниц связывает отдельную виртуальную страницу памяти приложения с реальной страницей, доступной в ОЗУ. Таким образом, при попытке доступа приложения к определенному адресу операционная система выполняет трансляцию виртуального адреса в физический адрес ОЗУ.

Если в системе Win32 запущено несколько приложений, неизбежно будут возникать моменты, когда все физические страницы ОЗУ заняты, а одному из приложений требуется занять новую страницу. Но это невозможно, поскольку свободных страниц нет. В таком случае операционная система записывает физическую страницу на жесткий диск (этот процесс называется подкачкой или свопингом (swapping)) и отмечает в таблице трансляции, что страница была записана на диск, после чего физическая страница помечается как занятая приложением.

Все это хорошо до тех пор, пока приложение, которому принадлежит страница на диске, не пытается обратиться к ней. Процессор определяет, что физическая страница уже недоступна и возникает ошибка отсутствия страницы (page fault). Операционная система принимает управление на себя, записывает другую страницу на диск, освобождает физическую страницу, записывает на освободившееся место запрашиваемую страницу и продолжает выполнение приложения. Само приложение ничего не знает о происходящем внутри операционной системы процессе. Оно, например, считывает первый байт страницы памяти, и именно это (в конечном счете) происходит.

Все описанное выше в 32-разрядной операционной системе происходит постоянно. Физические страницы записываются на диск и считываются с диска. При этом изменяются таблицы трансляции страниц. В большинстве случаев простой пользователь ничего не замечает, за исключением одной ситуация. И эта ситуация называется пробуксовка (thrashing).

Пробуксовка

Пробуксовка может негативно сказаться на вашем приложении, превращая его из высокоэффективной оптимизированной программы в медленную и ленивую. Предположим, что существует приложение, которое требует большого объема памяти, скажем, например, половину всей имеющейся в компьютере физической памяти. Оно создает большие массивы крупных блоков, выделяя память из кучи. Такое выделение приведет к тому, что будут заниматься новые страницы, а старые, скорее всего, будут записываться на диск. Затем приложение считывает эти большие блоки, начиная с начала массива и в направлении его конца. Операционная система при необходимости будет считывать запрашиваемые страницы из ОЗУ. При этом никаких проблем возникать не будет.

А теперь представим себе, что приложение считывает блоки в произвольном порядке. Скажем, сначала оно считывает данные из блока 56, затем из блоков 123, 12, 234 и т.д. В таком случае вероятность возникновения ошибки отсутствия страницы увеличивается. При этом все большее и большее количество страниц будет записываться на диск и считываться с диска. Индикатор работы диска будет гореть почти постоянно, а скорость работы приложения упадет. Это и есть пробуксовка - непрерывный обмен страницами между диском и памятью, вызванный запросами приложения страниц в произвольном порядке.

Поделиться:
Популярные книги

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Купец III ранга

Вяч Павел
3. Купец
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Купец III ранга

Черный Маг Императора 11

Герда Александр
11. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Черный Маг Императора 11

Обгоняя время

Иванов Дмитрий
13. Девяностые
Фантастика:
попаданцы
5.00
рейтинг книги
Обгоняя время

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Бастард Императора. Том 2

Орлов Андрей Юрьевич
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бастард Императора. Том 2

Маршал Советского Союза. Трилогия

Ланцов Михаил Алексеевич
Маршал Советского Союза
Фантастика:
альтернативная история
8.37
рейтинг книги
Маршал Советского Союза. Трилогия

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Курсант: назад в СССР 2

Дамиров Рафаэль
2. Курсант
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Курсант: назад в СССР 2

Отвергнутая невеста генерала драконов

Лунёва Мария
5. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Отвергнутая невеста генерала драконов

Бастард

Майерс Александр
1. Династия
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S