Чтение онлайн

на главную - закладки

Жанры

Фундаментальные алгоритмы и структуры данных в Delphi

Бакнелл Джулиан М.

Шрифт:

if (Node^.btChild[ctLeft]<> nil) then

Queue.Enqueue(Node^.btChild[ctLeft]);

{поместить в очередь правый дочерний узел, если он не нулевой}

if (Node^.btChild[ctRight] <> nil) then

Queue.Enqueue(Node^.btChild[ctRight]);

end;

end;

finally

{уничтожить очередь}

Queue.Free;

end;

end;

Подобно методам нерекурсивного обхода, метод btLevelOrder должен вызываться только для дерева, которое является непустым.

Реализация

класса бинарных деревьев

Как и в случае остальных уже рассмотренных структур данных, мы реализуем стандартное бинарное дерево в виде класса. Действительно, мы уже положили начало такому подходу, рассмотрев различные методы готового класса.

В идеале, как, например, это было сделано для связных списков, желательно освободить пользователя класса от необходимости разбираться в структуре узлов (это позволит нам впоследствии изменять их структуру, не причиняя неудобств пользователю класса). Но в случае использования обычных бинарных деревьев приходится предполагать наличие у пользователя определенных знаний о структуре узлов, которые позволяют ему вставить новый узел (пользователь должен сообщить классу дерева, какой узел является родительским, и каким дочерним узлом становится новый узел). Поэтому наша реализация будет "черным ящиком" не совсем в той степени, в какой хотелось бы.

Класс бинарного дерева будет поддерживать такие стандартные операции, как вставка и удаление. Кроме того, его метод Traverse будет поддерживать различные виды обхода. Одним из методов, который мог бы обеспечить определенные преимущества при решении задач, подобных синтаксическому анализу выражений, была бы операция объединения двух деревьев в новый корневой узел.

Листинг 8.9. Интерфейс класса бинарного дерева

type

TtdBinaryTree - class {класс бинарного дерева}

private

FCount : integer;

FDispose : TtdDisposeProc;

FHead : PtdBinTreeNode;

FName : TtdNameString;

protected

procedure btError(aErrorCode : integer;

const aMethodName : TtdNameString);

function btLevelOrder(aAction : TtdVisitProc;

aExtraData : pointer): PtdBinTreeNode;

function btNoRecInOrder(aAction : TtdVisitProc;

aExtraData : pointer): PtdBinTreeNode;

function btNoRecPostOrder(aAction : TtdVisitProc;

aExtraData : pointer): PtdBinTreeNode;

function btNoRecPreOrder(aAction : TtdVisitProc;

aExtraData : pointer): PtdBinTreeNode;

function btRecIn0rder(aNode : PtdBinTreeNode; aAction : TtdVisitProc;

aExtraData : pointer): PtdBinTreeNode;

function btRecPostOrder(aNode : PtdBinTreeNode; aAction : TtdVisitProc;

aExtraData : pointer): PtdBinTreeNode;

function btRecPreOrder(aNode : PtdBinTreeNode; aAction : TtdVisitProc;

aExtraData : pointer): PtdBinTreeNode;

public

constructor Create(aDisposeItem : TtdDisposeProc);

destructor Destroy; override;

procedure Clear;

procedure Delete(aNode : PtdBinTreeNode);

function InsertAt(aParentNode : PtdBinTreeNode;

aChildType : TtdChildType; aItem : pointer): PtdBinTreeNode;

function Root : PtdBinTreeNode;

function Traverse(aMode : TtdTraversalMode; aAction : TtdVisitProc;

aExtraData : pointer; aUseRecursion : boolean): PtdBinTreeNode;

property Count : integer read FCount;

property Name : TtdNameString read FName write FName;

end;

Как

обычно при использовании структур данных, рассмотренных в этой книге, мы убеждаемся, что класс владеет содержащимися в нем данными и, следовательно, может их при необходимости освобождать, или же предполагаем, что обработка данных выполняется из какого-то другого места, и в этом случае дерево не будет освобождать какие-либо данные. Поэтому конструктор Create принимает параметр, определяющий процедуру удаления элемента данных. Если этот параметр является нулевым, дерево не владеет данными и, следовательно, не будет их удалять. Если параметр aDisposeItem является адресом процедуры, эта процедура будет вызываться в каждом случае, когда требуется освободить элемент.

Листинг 8.10. Методы Create и Destroy класса бинарного дерева

constructor TtdBinaryTree.Create(aDisposeItem : TtdDisposeProc);

begin

inherited Create;

FDispose := aDisposeItem;

{проверить, доступен ли диспетчер узлов}

if (BTNodeManager = nil) then

BTNodeManager := TtdNodeManager.Create(sizeof(TtdBinTreeNode));

{выделить заглавный узел; со временем корневой узел дерева станет его левым дочерним узлом}

FHead := BTNodeManager.AllocNodeClear;

end;

destructor TtdBinaryTree.Destroy;

begin

Clear;

BTNodeManager.FreeNode(FHead);

inherited Destroy;

end;

Метод Create убеждается, что диспетчер узлов бинарного дерева активен, а затем выделяет фиктивный заглавный узел. Именно на месте левого дочернего узла этого узла находится корневой узел дерева. Метод Destroy убеждается, что дерево очищено (т.е. все узлы в дереве освобождены), а затем освобождает фиктивный заглавный узел.

Следующий метод, который мы рассмотрим - метод Clear. В данном случае требуется удалить все узлы дерева. Как упоминалось ранее, это выполняется за счет применения обхода всего дерева в глубину. В данном случае мы воспользовались нерекурсивным обходом, поскольку он выполняется быстрее.

Листинг 8.11. Очистка бинарного дерева

procedure TtdBinaryTree.Clear;

var

Stack : TtdStack;

Node : PtdBinTreeNode;

begin

if (FCount = 0) then

Exit;

Поделиться:
Популярные книги

Курсант: назад в СССР

Дамиров Рафаэль
1. Курсант
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Курсант: назад в СССР

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

Пышка и Герцог

Ордина Ирина
Фантастика:
юмористическое фэнтези
историческое фэнтези
фэнтези
5.00
рейтинг книги
Пышка и Герцог

Имперский Курьер. Том 5

Бо Вова
5. Запечатанный мир
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Имперский Курьер. Том 5

Имя нам Легион. Том 7

Дорничев Дмитрий
7. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 7

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Законы Рода. Том 11

Андрей Мельник
11. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 11

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Вираж бытия

Ланцов Михаил Алексеевич
1. Фрунзе
Фантастика:
героическая фантастика
попаданцы
альтернативная история
6.86
рейтинг книги
Вираж бытия

Отмороженный 11.0

Гарцевич Евгений Александрович
11. Отмороженный
Фантастика:
боевая фантастика
рпг
попаданцы
фантастика: прочее
фэнтези
5.00
рейтинг книги
Отмороженный 11.0

История "не"мощной графини

Зимина Юлия
1. Истории неунывающих попаданок
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
История немощной графини

Крестоносец

Ланцов Михаил Алексеевич
7. Помещик
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Крестоносец

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Призыватель нулевого ранга

Дубов Дмитрий
1. Эпоха Гардара
Фантастика:
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Призыватель нулевого ранга