Чтение онлайн

на главную - закладки

Жанры

Геометрия, динамика, вселенная
Шрифт:

1 2 материальную точку

dr d**2 r Ф = Ф (m|, m|…, r, — , ----…). (14)

1 2 dt dt**2

Однако при учете свойств инерциальной системы это выражение сильно упрощается. Действительно, в общем случае аргументы r и v = dr/dt исключаются вследствие эквивалентности инерциальных систем. Всегда можно выбрать систему, в которой в данный момент v=0. Производные высших порядков: d**3 r/dt**3, d**4 r/dt**4…. в общем виде также не могут определять движение, поскольку в этом случае, помимо выделенного класса систем отсчета (соответствующего v=const), существовали бы и другие привилегированные системы отсчета, удовлетворяющие условиям a = d**2 r/dt**2=const или b = d**3 r/dt**3=const и т. д. Поскольку рассматривается материальная

точка, то естественно допустить, что она характеризуется единым параметром m=m|. Поэтому (14) можно

1 записать в форме

d**2 r Ф = Ф (m, — --). (15)

dt**2

Величина m — внутренняя характеристика тела, вторая производная d**2 r/dt**2 определяется взаиморасположением тела отсчета и материальной точки. В рамках ньютоновской механики обе величины абсолютно независимы. Поэтому естественно предположить, что они входят в выражение (14) в виде произведения

d**2 r Ф = Ф (m —---). (16)

dt**2

Назовем силой функцию F, обратную функции Ф, тогда получаем основной закон

d**2 r F = m —---. (17)

dt**2 [7]

Из свойств пространства вытекают характеристики дальнодействующих сил, составляющих основу классической механики.

Назовем дальнодействующими (макроскопическими) силами такие воздействия, которые в статическом случае (т. е. когда тело отсчета неподвижно) можно характеризовать силовыми линиями, начинающимися в теле отсчета, но не изменяющимися в пустом пространстве. Иными словами, в пустом пространстве силовые линии — прямые. Если же силовые пересекают материальную точку, то они взаимодействуют с ней, прекращая свое существование.

7

Строго говоря, здесь пренебрегается возможным вращением системы. Обобщение рассуждений, учитывающих вращение, не представляет трудностей.

Заметим, что «прямолинейность» силовых линий нетривиальное допущение, которое характерно исключительно для дальнодействующих сил. Для микроскопических взаимодействий силовые линии либо запутываются, взаимодействую друг с другом, утрачивая прямолинейность (сильное взаимодействие), либо обрываются (слабое взаимодействие). На современном языке необходимыми и достаточными условиями дальнодействия сил являются неравенства

ALPHA << 1, m| = 0,

c

где ALPHA — безразмерная константа взаимодействия, m|

c массам обменной частицы (см. Дополнение). Далее в этом разделе ограничимся исключительно дальнодействующими макроскопическими силами.

Поскольку силовое воздействие является точечным и осуществляется в месте расположения материальной точки, то единственная характеристика сил, обусловленная этим расположением, есть плотность d силовых линий. Поэтому сила, действующая на материальную точку, пропорциональна плотности силовых линий: F~d. Но в силу изотропии и однородности пространства полное число силовых линий неизменно, а плотность силовых линий неизменно, а плотность силовых линий макроскопического взаимодействия обратно пропорциональна площади сферы с центром, расположенным в начале координат (теле отсчета). Эта сфера проходит через материальную точку. поскольку площадь сферы в трехмерном евклидовом пространстве пропорциональна r**2 (r — расстояние между телом отсчета и материальной точкой), то

F~1/r**2. (19)

Мы получили выражение для макроскопических сил: силы Кулона и силы Ньютона.

Таким образом, оба закона — следствие особых свойств трехмерного евклидова пространства.

Следовательно, как механика Ньютона, так и выражение для статических (классических) сил зависят от свойств пространства. Подчеркнем, что, несмотря на демонстрацию тесной связи основ динамики и свойств пространства, нельзя полностью

свести физику к логическим умозаключениям, основанным не геометрии. Разумеется, лишь опыт может позволить заключить о макроскопичности данного типа сил. Можно (как это происходило в действительности) на опыте измерить зависимость (19), на более современном уровне установить соотношения (18), которые также являются следствием экспериментов.

Однако общие соотношения отражают свойства пространства, и наша цель — демонстрация тесной связи этих свойств и простейшей динамики.

4. ПРОСТРАНСТВО СПЕЦИАЛЬНОЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ(ПРОСТРАНСТВО МИНКОВСКОГО)

Теории относительности посвящено огромное число книг, написанных на разных уровнях. Поэтому нецелесообразно представлять здесь систематическое изложение этой теории. Идея этого и следующего разделов несколько скромнее: очертить лаконично идею взаимосвязи геометрии и динамики, обусловленную созданием теории относительности, которая изменила сам стиль этой взаимосвязи. Ранее (в ньютоновской механике) эта взаимосвязь проявлялась как бы неявно: в определении инерциальной системы, мельком упоминалась при выводу законов сохранения и т. д. После утверждения теории относительности единство геометрии и динамики стало краеугольным камнем физики.

Специальная теория относительности базируется на двух постулатах.

1. Существует класс эквивалентных инерциальных систем отсчета. (Этот постулат оправдывается свойствами пространства: изотропией и однородностью.)

2. Скорость света в пустоте постоянна и не зависит от движения его источника или приемника.

К этому постулату, выдвинутому А.Эйнштейном в 1905 г., мы привыкли. А привычка часто является синонимом тривиальности. В действительности он связан с двумя нетривиальными допущениями. Во-первых, скорость света c не подчиняется обычному классическому правилу сложения скоростей: v| = v| + v| (v| — суммарная скорость, v|

3 2 1 3 1 скорость источника, v| — скорость испущенной материи, в

2 данном случае скорость света). И, во-вторых, этот постулат также связан с утверждением об евклидовости пространства. Отсутствие однородности или неизотропия пространства также привели бы к его нарушению. Физической иллюстрацией возможности подобного нарушения евклидовости является существование макроскопических тел и сильных (>=10**13 Гс) электромагнитных полей. В областях, где находятся эти объекты, скорость света отличны от c. Поэтому при формулировании второго постулата особо подчеркивается свойство среды, в которой распространяется свет (пустота). Верные традиции этой книги, мы остановимся на простейшей системе, состоящей из тела отсчета и материальной точки (пробного тела).

В математическом плане второй постулат специальной теории заключается в том, что время распространения света t между началом координат O и точкой (x, y, z) определяется уравнением

(ct)**2 — x**2 — y**2 — z**2 = 0 (20)

или в дифференциальной форме

(cdt)**2 — dx**2 — dy**2 — dz**2 = 0 (21)

Соотношения (20) и (21) кардинально отличаются от связи между пространством и временем в классической физике (см. (12)). В последнем соотношении пространственные и временные координаты выступают как независимые переменные. Равенства (20) и (21) жестко связывают пространство и время. Пространство и время образуют единый физико-математический континуум. Иногда (особенно в период ранних дискуссий о теории относительности) наиболее ревностные ее апологеты утверждали, что Эйнштейн и Минковский полностью уравняли пространство и время. Это утверждение неверно. В соотношениях (20) и (21) временная и пространственные координаты выступают с разными знаками, что отражает их фундаментальное различие: время (в отличие от пространства) — направленный вектор: существует принцип причинности, различающий будущее и прошлое.

Поделиться:
Популярные книги

Эволюционер из трущоб

Панарин Антон
1. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб

Дикая фиалка заброшенных земель

Рейнер Виктория
1. Попаданки рулят!
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Дикая фиалка заброшенных земель

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Вторая жизнь майора. Цикл

Сухинин Владимир Александрович
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Вторая жизнь майора. Цикл

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Герцог и я

Куин Джулия
1. Бриджертоны
Любовные романы:
исторические любовные романы
8.92
рейтинг книги
Герцог и я

Треугольная шляпа. Пепита Хименес. Донья Перфекта. Кровь и песок.

Бласко Висенте Ибаньес
65. Библиотека всемирной литературы
Проза:
классическая проза
5.00
рейтинг книги
Треугольная шляпа.
Пепита Хименес.
Донья Перфекта.
Кровь и песок.

Голодные игры

Коллинз Сьюзен
1. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.48
рейтинг книги
Голодные игры

Опасная любовь командора

Муратова Ульяна
1. Проклятые луной
Фантастика:
фэнтези
5.00
рейтинг книги
Опасная любовь командора

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI