Чтение онлайн

на главную - закладки

Жанры

Геометрия, динамика, вселенная
Шрифт:

До сих пор мы почти одновременно говорили о совместной геометрической интерпретации электромагнитного и гравитационного взаимодействий и существовании других (слабого и сильного) взаимодействий, которые как будто не укладываются в схему Калуцы.

Ранее указывалось, что решение этой проблемы появилось в результате создания теории взаимодействия кварков (квантовая хромодинамика) и успехов в объединении электромагнитного и слабого взаимодействий (теория Глешоу Вайнберга — Салама). Наша формулировка неточна. На самом деле квантовая хромодинамика

не вошла в арсенал достижений физики как теория, интерпретирующая взаимодействие кварков.

Оказалось, что уравнения Янга — миллса хорошо хорошо описывают взаимодействие кварков в определенных границах, которые по существу являются пределами применимости квантовой хромодинамики. Частица со свойствами, весьма близкими к частице Янга — Миллса, получила название глюона и оказалась переносчиком сильного взаимодействия между кварками (см. Дополнение).

В основе теории Янга — Миллса лежат калибровочные соотношения

i g T(x) 1 a PSIG' = e||||||||, A' — > A + [aA] —- —--, (55)

g x

g=const, a=a(x).

Соотношения (55) определяют уравнения Янга — Миллса и очень похожи на условия (48), (49) калибровочной инвариантности в электродинамике. Однако есть и два существенных отличия: 1) в уравнениях (55) T(x) не число, а квадратная матрица и 2) в условие преобразования вектор-потенциала A входит дополнительный член [a,A] (наличие такого члена приводит к тому, что вектор A не только инвариантен относительно смещения, но и относительно вращения в изотопическом пространстве). Эти две, казалось бы, несущественные особенности радикально отличают уравнения Янга — Миллса от уравнений электродинамики.

Отметим в них то, что нам потребуется в дальнейшем. Во-первых, свойства матриц T существенно отличаются от свойств алгебраических чисел ALPHA. Числа характеризуются свойствами коммутативности (ALPHA|ALPHA| — ALPHA|ALPHA| =

1 2 2 1 0). Матрицы этим свойством не обладают (вообще говоря, T|T| — T|T| /= 0). 1 2 2 1

Инвариантность (55) функции требует введения уже

1 не одномерного пространства S|, а многомерного. Например, если матрица T двумерна, то соответствующее ей пространства

3 — трехмерная сфера S|. Соотношение между размерностями матрицы (n) и соответствующего ей пространства (N) определяется квантовомеханическим условием унитарности: N=n**2–1 (n>=2).

Для понимания дальнейшего целесообразно вначале ограничиться геометрической интерпретацией электрослабого взаимодействия.

Известно, что слабое взаимодействие характеризуется

± 0 тремя частицами-переносчиками — тяжелыми W||- и Z|-бозонами, образующими изотопический триплет. Изотопический триплет соответствует трем независимым направлениями вектора состояния в изотопическом пространстве. Поэтому для своего геометрического описания этот триплет требует трехмерную

3 сферу S|.

Электромагнитное взаимодействие (изотопический спин фотона

1 равен нулю) описывается сферой S|. Поэтому может показаться, что для совместного описания электрослабого

3

взаимодействия могут потребоваться и сфера S| и сфера

1 3 1 (окружность) S| (прямое произведение S| x S|). Однако ясно,

3 1 что сфера S| уже включает окружность S| — она состоит из бесконечной совокупности окружностей. Поэтому может опять возникнуть неверное впечатление, что для описания

3 электрослабого взаимодействия достаточно одной сферы S|, уже

1 включающей окружность S|. В действительности такая процедура слишком упрощена. Выше отмечалось, что окружность

1 (сфера S|) обладает среди сфер уникальной особенностью: лишь

1 в пределах сферы S| два последовательных вращения коммутативны, что отражается в разнице правил коммутации двух чисел и двух матриц. Суммарное вращение в пределах окружности не зависит от порядка, в котором вращается вектор состояния. Окончательный результат не зависит от того, в каком порядке пробегает вектор состояния два угла (ALPHA|,

1 ALPHA|) вдоль окружности. Суммарный угол в любом случае

2 равен ALPHA| + ALPHA| = ALPHA| + ALPHA|.

1 2 2 1

Совершенно иная ситуация возникает при вращении в

N сферах S| (N>=2) высших размерностей. В этом случае суммарное вращение зависит от порядка, что символически можно записать в форме ALPHA| + ALPHA| = ALPHA| + ALPHA|.

1 2 2 1 Подобное различие в свойствах коммутативности обуславливает кардинальную разницу между уравнениями электродинамики и

1 уравнениями Янга — Миллса. Поэтому включение окружности S| в

3 сферу S| неправомочно.

Однако вполне оправдана несколько иная операция:

1 выделения некоторой окружности S| и использования ее в

3 дальнейшем для построения сферы S|. Иначе говоря, разбиения

3 1 2 сферы S| на две: S| и S|. В стандартных обозначениях такое

3 1 2 разбиение имеет вид S| = S| + S|. Это произведение двух сфер и есть геометрическая интерпретация электрослабого взаимодействия. Наглядно ее можно попытаться представить как пространство Минковского (Римана), в каждой точке которого в определенном взаимоотношении «прикреплены» окружности и сферы одинакового радиуса.

По аналогии с геометрической интерпретацией электрослабого взаимодействия можно геометрически интерпретировать объединение сильного, слабого и электромагнитного взаимодействия (большое объединение).

Квантовая хромодинамика определяется группой SU(3), соответствующей 3-мерному комплексному пространству (матрица T 3-мерна). Учитывая квантовое условие унитарности (см. выше), размерность соответствующего пространства равна восьми. Эту размерность можно уменьшить до семи, используя свойства проективных пространств, когда одна из размерностей стягивается в точку. В проективной геометрии все точки, координаты которых пропорциональны (отличаются одним и тем же числовым множителем), принимаются за одну точку. Иначе говоря, все точки с координатами bx|, bx|…, bx| (b

Поделиться:
Популярные книги

Невеста драконьего принца

Шторм Елена
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Невеста драконьего принца

Черный дембель. Часть 1

Федин Андрей Анатольевич
1. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 1

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Сумеречный стрелок 7

Карелин Сергей Витальевич
7. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок 7

Маленькая хозяйка большого герцогства

Вера Виктория
2. Герцогиня
Любовные романы:
любовно-фантастические романы
7.80
рейтинг книги
Маленькая хозяйка большого герцогства

Тайны затерянных звезд. Том 2

Лекс Эл
2. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
космоопера
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 2

Чехов

Гоблин (MeXXanik)
1. Адвокат Чехов
Фантастика:
фэнтези
боевая фантастика
альтернативная история
5.00
рейтинг книги
Чехов

Право на месть

Ледова Анна
3. Академия Ровельхейм
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Право на месть

Ваше Сиятельство 10

Моури Эрли
10. Ваше Сиятельство
Фантастика:
боевая фантастика
технофэнтези
фэнтези
эпическая фантастика
5.00
рейтинг книги
Ваше Сиятельство 10

Проблема выбора

Шеллина Олеся
2. Внук Петра Великого
Фантастика:
альтернативная история
5.50
рейтинг книги
Проблема выбора

Сын Тишайшего 2

Яманов Александр
2. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Сын Тишайшего 2

Вторая жизнь

Санфиров Александр
Фантастика:
боевая фантастика
альтернативная история
6.88
рейтинг книги
Вторая жизнь

Самый богатый человек в Вавилоне

Клейсон Джордж
Документальная литература:
публицистика
9.29
рейтинг книги
Самый богатый человек в Вавилоне

Блуждающие огни 4

Панченко Андрей Алексеевич
4. Блуждающие огни
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Блуждающие огни 4