Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Пусть имеем напорный трубопровод круглого сечения, в котором есть неустановившееся движение жидкости.

Ось потока совпадает с осью l. Если выделить на этой оси элемент dl, то, согласно вышеуказанному правилу, можно составить уравнение движения

В приведенном уравнении проекции четырех сил, действующих на поток, точнее, на l, равны нулю:

1) M – силы инерции, действующие на элемент dl;

2) p – силы гидродинамического давления;

3) T – касательные силы;

4) G – силы тяжести: здесь мы, говоря о силах, имели

в виду проекции сил, действующих на элемент l.

Перейдем к формуле (1), непосредственно к проекциям действующих сил на элемент t, на ось движения.

1. Проекции поверхностных сил:

1) для гидродинамических сил p проекцией будет

2) для касательных сил T

Проекция касательных сил имеет вид:

–gJdl. (3)

2. Проекция сил тяжести G на элемент

3. Проекция сил инерции M равна

54. Истечение жидкости при постоянном напоре через малое отверстие

Будем рассматривать истечение, которое происходит через малое незатопленное отверстие. Для того, чтобы отверстие считать малым, должны выполняться условия:

1) напор в центре тяжести Н >> d, где d – высота отверстия;

2) напор в любой точке отверстия практически равен напору в центре тяжести Н.

Что касается затопленности, то таковой считают истечение под уровень жидкости при условии, если не изменяются со временем: положение свободных поверхностей до и после отверстий, давление на свободные поверхности до и после отверстий, атмосферное давление по обе стороны от отверстий.

Таким образом, имеем резервуар с жидкостью, у которой плотность , из которого через малое отверстие происходит истечение под уровень. Напор Н в центре тяжести отверстия постоянен, что значит, скорости истечения постоянны. Следовательно, движение установившееся. Условием равенства скоростей на противоположных вертикальных границах отверстий является условие d <= 0,1Н, где d – наибольший вертикальный размер.

Ясно, что нашей задачей является определение скорости истечения и расхода жидкости в нем.

Сечение струи, отстоящее от внутренней стенки резервуара на расстояние 0,5d, называют сжатым сечением струи, которое характеризуется коэффициентом сжатия

Формулы определения скорости и расхода потока:

где называется коэффициентом скорости.

Теперь выполним вторую задачу, определим расход Q. По определению

Обозначим Е= , где – коэффициент расхода, тогда

Различают следующие разновидности сжатия:

1. Полное сжатие – это такое сжатие, которое происходит по всему периметру отверстия, в противном случае сжатие считается неполным сжатием.

2. Совершенное

сжатие является одной из двух разновидностей полного сжатия. Это такое сжатие, когда кривизны траектории, следовательно, и степень сжатия струи наибольшие.

Подводя итог, заметим, что неполная и несовершенная формы сжатий приводят к росту коэффициента сжатия. Характерной особенностью совершенного сжатияявляется то, что в зависимости от того, под воздействием каких сил происходит истечение.

55. Истечение через большое отверстие

Отверстие считают малым, когда его вертикальные размеры d < 0,1Н. Большим отверстием будем считать такое отверстие, для которого тот же d> 0,1Н.

Рассматривая истечение через малое отверстие, практически пренебрегли различием скоростей в разных точках сечения струи. В этом случае поступить так же мы не сможем.

Задача та же: определить расход и скорости в сжатом сечении.

Поэтому расход определяют следующим способом: выделяют бесконечно малую горизонтальную высоту dz. Таким образом, получается горизонтальная полоса с переменной длиной bz. Тогда, интегрировав по длине, можно найти элементарный расход

где Z – переменный напор по высоте отверстия, на такую глубину погружен верх выбранной полосы;

– коэффициент расхода через отверстие;

bz – переменная длина (или ширина) полосы.

Расход Q (1) можем определить, если = const и известна формула bz= f(z). В общем случае, расход определяют по формуле

Если форма отверстия прямоугольная, то bz= b = const, интегрировав (2), получаем:

где Н1, Н2 – напоры на уровнях соответственно у верхней и у нижней кромок отверстия;

Нц – напор над центром отверстия;

d – высота прямоугольника.

Формула (3) имеет более упрощенный вид:

В случае истечения через круглое отверстие пределами интегрирования в (2) служат Н1= Нц – r; Н2 = Нц + r; Z = Нц – rcos; dz = sind; bz = 2rsin.

Избегая математического излишества, приведем конечную формулу:

Как видно из сравнений формул, особой разницы в формулах для расхода нет, только при больших и малых отверстиях коэффициенты расхода разные

56. Коэффициент расхода системы

Требуется выяснить вопрос о расходе, если истечение происходит по трубам, соединенным в одну систему, но имеющих разные геометрические данные. Здесь нужно рассмотреть каждый случай отдельно. Приведем некоторые из них.

Поделиться:
Популярные книги

Утопающий во лжи 4

Жуковский Лев
4. Утопающий во лжи
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Утопающий во лжи 4

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Самый богатый человек в Вавилоне

Клейсон Джордж
Документальная литература:
публицистика
9.29
рейтинг книги
Самый богатый человек в Вавилоне

Огненный наследник

Тарс Элиан
10. Десять Принцев Российской Империи
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Огненный наследник

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Секретарша генерального

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
8.46
рейтинг книги
Секретарша генерального

Часовое имя

Щерба Наталья Васильевна
4. Часодеи
Детские:
детская фантастика
9.56
рейтинг книги
Часовое имя

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Не лечи мне мозги, МАГ!

Ордина Ирина
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.00
рейтинг книги
Не лечи мне мозги, МАГ!

Голодные игры

Коллинз Сьюзен
1. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.48
рейтинг книги
Голодные игры

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Доктор 4

Афанасьев Семён
4. Доктор
Фантастика:
альтернативная история
5.00
рейтинг книги
Доктор 4