Чтение онлайн

на главную - закладки

Жанры

Гиперпространство
Шрифт:

Таким образом, Риман сделал первое за 200 лет значимое отступление от принципов Ньютона, отказался от принципа воздействия на расстоянии. По Риману, сила — следствие геометрии.

Затем Риман заменил двумерный лист бумаги нашим трехмерным миром, «смятым» в четвертом измерении. Деформации нашей Вселенной неочевидны для нас. Но мы сразу почувствуем некий подвох, когда попытаемся идти по прямой. Мы будем двигаться словно во хмелю, как будто незримая сила тянет нас, толкает то вправо, то влево.

Риман пришел к выводу, что электричество, магнетизм и гравитация вызваны деформацией нашей трехмерной Вселенной в незримом четвертом измерении. Таким образом, сила не может существовать самостоятельно и независимо, а представляет собой лишь видимое следствие искажения геометрии пространства. Введя в рассуждения четвертое пространственное измерение, Риман случайно наткнулся на тему, которая стала одной из господствующих в современной теоретической физике, — явное упрощение законов природы в

категориях многомерного пространства. И Риман приступил к работе над математическим языком, пригодным для выражения этой идеи.

Метрический тензор Римана: новая теорема Пифагора

Риману понадобилось несколько месяцев, чтобы оправиться от последствий нервного срыва. Его доклад, наконец прочитанный в 1854 г., приняли с воодушевлением. В ретроспективе это был, бесспорно, один из наиболее выдающихся публичных докладов в истории математики. По Европе быстро распространилось известие, что Риман решительно сбросил оковы евклидовой геометрии, которой математики подчинялись на протяжении двух тысячелетий. О докладе вскоре узнали во всех центрах образования Европы, вклад Римана в математику приветствовали повсюду в научных кругах. Доклад Римана перевели на несколько языков, он произвел фурор в математике. К евклидовой геометрии раз и навсегда перестали относиться так, как прежде.

Суть выдающегося труда Римана, как и суть многих величайших работ в области физики и математики, уловить довольно просто. Риман начал со знаменитой теоремы Пифагора, одного из важнейших достижений древнегреческих математиков. Эта теорема устанавливает соотношения между длинами сторон прямоугольного треугольника. Согласно ей, сумма квадратов коротких сторон, катетов, равна квадрату длинной стороны, гипотенузы; если аи b— длины катетов, ac— длина гипотенузы, тогда а 2+ Ь 2= с 2.(Естественно, теорема Пифагора лежит в основе всей архитектуры; все сооружения на планете построены с ее учетом.)

Эту теорему легко сформулировать для трехмерного пространства. Она гласит, что сумма квадратов трех смежных сторон куба равна квадрату его диагонали; или если а, Ьи с— стороны куба, ad — его диагональ, тогда а 2+ b 2+ с 2= d 2(рис. 2.1).

Рис. 2.1. Длину диагонали куба дает трехмерный вариант теоремы Пифагора: a 2+ Ь 2+ c 2= d 2. Простого добавления новых переменных в теорему Пифагора достаточно, чтобы записать формулу для диагонали гиперкуба в N-мерном пространстве. Таким образом, несмотря на сложность визуализации высших измерений, представить N-мерность математически довольно просто.

Теперь так же просто можно сформулировать ту же теорему для N– мерного пространства. Представим себе N– мерный куб. Если а, Ь,с… — длины сторон «гиперкуба», а z— длина его диагонали, тогда а 2+ Ь 2+ с 2+ d 2+… = z 2.Примечательный момент: хотя наш мозг не в состоянии представить N– мерный куб, формулу для его сторон и диагонали записать несложно. (Это типичная особенность работы с гиперпространством. С математической, точки зрения манипулировать N– мерным пространством не труднее, чем трехмерным пространством. Поразительно, как на простом листе бумаги можно математически описать свойства многомерных объектов, которые не в силах вообразить наш мозг.)

Затем Риман записал эти уравнения для пространств с произвольным количеством измерений. Эти пространства могут быть либо плоскими, либо искривленными. К плоским применяются обычные аксиомы Евклида: кратчайшее расстояние между двумя точками — прямая, параллельные линии никогда не пересекаются, сумма внутренних углов треугольника составляет 180°. Вместе с тем Риман обнаружил, что поверхности могут иметь «положительную кривизну», как поверхность сферы, где параллельные всегда пересекаются и сумма углов треугольника может быть больше 180°. Бывают и поверхности с «отрицательной кривизной»: например, седлообразные или воронкообразные. На этих поверхностях сумма углов треугольника меньше 180°. Если взять линию и точку вне этой линии, то через такую точку можно провести бесконечное множество линий, параллельных данной (рис. 2.2).

Рис. 2.2.

Плоскость имеет нулевую кривизну. Согласно евклидовой геометрии сумма углов треугольника равна 180°, параллельные не пересекаются. В неевклидовой геометрии сфера имеет положительную кривизну. Сумма углов треугольника превышает 180°, параллельные линии всегда пересекаются. (К параллельным линиям относятся дуги, центры которых совпадают с центром сферы. Широтные линии в эту категорию не входят.) У седлообразной поверхности отрицательная кривизна. Сумма углов треугольника меньше 180°. Через конкретную точку можно провести бесконечное множество линий, параллельных данной.

Целью Римана было ввести в математику новый элемент, позволяющий описывать все поверхности независимо от их сложности. Как и следовало ожидать, эта цель побудила его обратиться к фарадеевой концепции поля.

Как мы помним, поле Фарадея представляло собой подобие крестьянского, занимающего двумерный участок пространства. Фарадеево поле занимает часть трехмерного пространства; любой точке этого пространства мы присваиваем ряд параметров, описывающих магнитное или электрическое взаимодействие в этой точке. Идея Римана заключалась в том, чтобы присвоить каждой точке пространства ряд параметров, которые описывали бы степень его деформации или кривизны.

К примеру, для обычной двумерной поверхности Риман вводил набор из трех параметров для каждой точки, полностью описывающих искривление этой поверхности. Риман обнаружил, что в четырех пространственных измерениях для описания свойств каждой точки требуется набор из десяти параметров. Каким бы «скомканным» или искривленным ни было пространство, этих десяти параметров для каждой точки оказывалось достаточно, чтобы зашифровать всю информацию о данном пространстве. Обозначим эти десять параметров как g 11, g 12, g 13,и т. д. (при анализе четырехмерного пространства нижний индекс меняется от единицы до четырех). В этом случае риманов набор из десяти параметров можно симметрично расположить, как показано на рис. 2.3 [15] . (Несмотря на то что компонентов всего 16, g 12= g 21, g 13= g 31и т. д., т. e. в действительности независимых компонентов только десять.) В настоящее время этот набор параметров называется римановым метрическим тензором.Грубо говоря, чем больше значение метрического тензора, тем сильнее скомкан лист. Как бы ни был смят лист бумаги, метрический тензор дает нам простое средство измерения его кривизны в любой точке. Если же мы полностью расправим скомканный лист, сделаем его плоским, то снова вернемся к теореме Пифагора.

15

А точнее, в условиях Nизмерений риманов метрический тензор g представляет собой матрицу NxN,определяющую расстояние между двумя точками, так что бесконечно малое расстояние между двумя точками дается выражением ds 2= dx g dx .В ограниченном плоском пространстве риманов метрический тензор становится диагональным, т. e. g = ,в итоге все формулы сводятся к теореме Пифагора для Nизмерений. Отклонение метрического тензора от ,грубо говоря, показывает, насколько пространство отличается от плоского. На основании метрического тензора можно построить риманов тензор кривизны, представленный R .

Искривление пространства в любой данной точке можно измерить, нарисовав в этой точке окружность и измерив ее площадь. В плоском двумерном пространстве площадь круга равна r 2.Но в условиях положительной кривизны, например, на сферической поверхности, эта площадь меньше r 2.А если кривизна отрицательная и поверхность седлообразная или воронкообразная, площадь круга больше r 2.

Строго говоря, принято считать, что кривизна скомканного листа бумаги равна нулю. Дело в том, что площади кругов, нарисованных на этой скомканной бумаге, по-прежнему равны r 2.В римановом примере взаимодействия, созданного смятым листом бумаги, мы косвенным образом подразумеваем, что бумага деформирована, растянута и сложена, поэтому кривизна отлична от нуля.

Поделиться:
Популярные книги

Зубных дел мастер

Дроздов Анатолий Федорович
1. Зубных дел мастер
Фантастика:
научная фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Зубных дел мастер

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

Кодекс Охотника. Книга X

Винокуров Юрий
10. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга X

Хозяин Теней

Петров Максим Николаевич
1. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Хозяин Теней

Опасная любовь командора

Муратова Ульяна
1. Проклятые луной
Фантастика:
фэнтези
5.00
рейтинг книги
Опасная любовь командора

Друд, или Человек в черном

Симмонс Дэн
Фантастика:
социально-философская фантастика
6.80
рейтинг книги
Друд, или Человек в черном

Волхв

Земляной Андрей Борисович
3. Волшебник
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волхв

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Всемирная энциклопедия афоризмов. Собрание мудрости всех народов и времен

Агеева Елена А.
Документальная литература:
публицистика
5.40
рейтинг книги
Всемирная энциклопедия афоризмов. Собрание мудрости всех народов и времен

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5

Морской волк. 1-я Трилогия

Савин Владислав
1. Морской волк
Фантастика:
альтернативная история
8.71
рейтинг книги
Морской волк. 1-я Трилогия

Прогрессор поневоле

Распопов Дмитрий Викторович
2. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прогрессор поневоле