Чтение онлайн

на главную - закладки

Жанры

Гиперпространство
Шрифт:

Теория гравитационного поля

Эйнштейну, который сформулировал свой физический принцип, не зная о трудах Римана, недоставало математического языка и способностей, необходимых для выражения этого принципа. Три долгих, обескураживающих года (1912–1915) он провел в лихорадочных поисках математических формул, способных описать принцип. В порыве отчаяния Эйнштейн взмолился в письме своему близкому другу, математику Марселю Гроссману: «Гроссман, помоги или я свихнусь!» [43]

43

Процитировано в: Абрахам Пайс «Научная деятельность и жизнь Альберта Эйнштейна», с. 212.

К счастью, Гроссман, роясь в библиотеке в поисках подсказок для решения задачи, поставленной Эйнштейном,

случайно наткнулся на труды Римана. Благодаря Гроссману Эйнштейн узнал о метрическом тензоре Римана, которым физики пренебрегали на протяжении 60 лет. Позднее Эйнштейн вспоминал, что Гроссман «обратился к литературе и вскоре обнаружил, что эта математическая задача уже решена Риманом, Риччи и Леви-Чивитой… Риман справился с ней успешнее всех».

Эйнштейн был потрясен, увидев в знаменитом докладе, представленном Риманом в 1854 г., ключ к решению задачи. Оказалось, работу Римана можно целиком включить в новую формулировку принципа. Великий труд Римана, повторенный почти дословно, обрел законное место в изложении принципа Эйнштейна. Этой работой Эйнштейн особенно гордился, даже больше, чем знаменитой формулой E= mc 2.Физическая интерпретация доклада, прочитанного Риманом в 1854 г., теперь называется общей теорией относительности,а уравнения поля, записанные Эйнштейном, причислены к наиболее основополагающим идеям в истории науки [44] .

44

Уравнения Эйнштейна выглядят так:

R – 1/2g R = -8 / c 2x GT

где T — тензор энергии-импульса, измеряющий содержание материи-энергии, a R — свернутый риманов тензор кривизны. Согласно этому уравнению, тензор энергии-импульса определяет степень кривизны, присутствующей в гиперпространстве.

Значительным вкладом Римана, как мы помним, было введение понятия метрического тензора — поля, определенного во всех точках пространства. Метрический тензор — не одно число. В каждой точке пространства он включает совокупность из десяти чисел. В планы Эйнштейна входила разработка теории гравитационного поля по примеру Максвелла. Предмет его поисков, поле, которое описывало бы гравитацию, удалось обнаружить буквально на первой странице доклада Римана. По сути дела, метрический тензор Римана представлял собой именно фарадеево поле применительно к гравитации!

Уравнения Эйнштейна, записанные с применением риманова метрического тензора, приобрели совершенство, какого в физике прежде не наблюдалось. Лауреат Нобелевской премии Субраманьян Чандрасекар однажды назвал их «прекраснейшей из всех существующих теорий». (В сущности, теория Эйнштейна настолько проста и вместе с тем так убедительна, что физиков порой озадачивает ее успешность. Физик из Массачусетского технологического института Виктор Вайскопф однажды сказал: «Все это напоминает историю о том, как крестьянин расспрашивал инженера об устройстве паровой машины. Инженер объяснил, куда поступает пар, какую он совершает работу, как действует двигатель и т. д. И услышал от крестьянина следующий вопрос: „Да это все понятно, а вот куда запрягать лошадь?“ Вот такие чувства и вызывает у меня общая теория относительности. Я знаю все подробности, понимаю, куда поступает пар, но до сих пор не представляю, куда запрягать лошадь» [45] .)

45

Процитировано в: Коул «Ответные вибрации: Размышления о физике как образе жизни» (К. С. Cole, Sympathetic Vibrations: Reflections on Physics as a Way of Life, New York: Bantam, 1985), c. 29.

Глядя в прошлое, теперь мы видим, как близко подступил Риман к открытию теории гравитации, едва не опередив Эйнштейна на 60 лет. Весь математический аппарат теории существовал уже в 1854 г. Уравнения Римана достаточно точно описывали самые сложные искривления пространства-времени в любом измерении. Но ему не хватало физической картины (того, что материя-энергия определяет кривизну пространства-времени) и проницательности, которой обладал Эйнштейн.

Жизнь в искривленном пространстве

Однажды

в Бостоне я побивал на хоккейном матче. Все взгляды, конечно, были прикованы к хоккеистам, скользящим по льду. Игроки так стремительно перепасовывали друг другу шайбу, что это напомнило мне обмен атомов электронами при образовании химических элементов или молекул. Я отметил, что каток, само собой, не принимал участия в игре. Он лишь задавал рамки, оставался пассивной ареной, на которой хоккеисты отвоевывали друг о друга очки.

Потом я представил, что было бы, если бы сам каток активно включился в игру. Что, если бы хоккеистам пришлось играть на изогнутой поверхности, изобилующей пологими холмами и глубокими впадинами?

Игра сразу же стала бы гораздо интереснее. Игрокам пришлось бы передвигаться по искривленной поверхности. Из-за кривизны катка исказились бы их движения, кривизна действовала бы подобно силе, притягивающей игроков друг к другу. Шайба двигалась бы по замысловатым траекториям, как змея, создавая дополнительные трудности в игре.

Потом я зашел еще дальше в игре своего воображения: представил себе, что хоккеисты находятся на катке, имеющем форму цилиндра. Развивая достаточную скорость, игроки могли бы кататься вверх-вниз, двигаться в любых направлениях по поверхности цилиндра. Это привело бы к появлению новых стратегий в игре: например, когда противника поджидают в засаде, чтобы потом, скатившись сверху вниз по поверхности цилиндра, застигнуть соперника врасплох. Если бы каток стал изогнутым, принял форму круга, пространство оказалось бы решающим фактором, обуславливающим движение материи по его поверхности.

Еще один, имеющий более непосредственное отношение к нашей Вселенной пример — жизнь в изогнутом пространстве, образованном гиперсферой, т. е. четырехмерной сферой [46] . Когда смотришь вперед в такой гиперсфере, свет полностью огибает ее небольшой периметр и возвращается к твоим глазам. И ты видишь, что кто-то стоит перед тобой, спиной к тебе, точно в такой же одежде, что и ты. Неодобрительно посмотрев на растрепанную шевелюру незнакомца, ты вдруг вспомнишь, что в тот день забыл причесаться.

46

Гиперсферу можно определить во многом тем же способом, как окружность или сферу. Окружность — это совокупность точек, удовлетворяющих уравнению x 2+ y 2 = r 2в плоскости x-y.Сфера — совокупность точек, удовлетворяющих уравнению x 2+ y 2+ z 2= r 2в пространстве x-y-z.Четырехмерная гиперсфера определяется как совокупность точек, удовлетворяющих уравнению x 2+ y 2+ z 2+ u 2= r 2в пространстве x-y-z-u.Тот же подход можно легко применить к N– мерному пространству.

Возможно, этот человек — просто изображение, созданное зеркалами? Чтобы выяснить это, протягиваешь руку и берешь его за плечо. И убеждаешься, что перед тобой не отражение, а человек. А если посмотреть вдаль, можно увидеть бесконечное множество совершенно одинаковых людей: их лица обращены вперед, у каждого на плече лежит ладонь человека, стоящего позади.

Однако самое поразительное — это ощущение, что чья-то рука лежит на твоем плече. Встревожившись, ты оборачиваешься и видишь за собой еще одну бесконечную цепочку одинаковых людей с повернутыми головами.

Что же происходит на самом деле? Разумеется, в этой гиперсфере настоящий человек только один — ты сам. Человек, стоящий перед тобой, — опять-таки ты. Ты смотришь себе в затылок. Протягивая руку к плечу стоящего впереди, ты на самом деле огибаешь рукой гиперсферу и кладешь ладонь на собственное плечо.

Эти парадоксальные фокусы, возможные в гиперпространстве, представляют интерес для физики, так как многие специалисты по космологии считают, что наша Вселенная в действительности представляет собой огромную гиперсферу. Есть сторонники и других, не менее странных топологий: например, «гиперпончиков» или лент Мебиуса. Практического применения все эти предположения не имеют, но помогают проиллюстрировать многие особенности жизни в гиперпространстве.

Поделиться:
Популярные книги

Жена проклятого некроманта

Рахманова Диана
Фантастика:
фэнтези
6.60
рейтинг книги
Жена проклятого некроманта

Сын Тишайшего

Яманов Александр
1. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.20
рейтинг книги
Сын Тишайшего

Демон

Парсиев Дмитрий
2. История одного эволюционера
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Демон

30 сребреников

Распопов Дмитрий Викторович
1. 30 сребреников
Фантастика:
попаданцы
альтернативная история
фэнтези
фантастика: прочее
5.00
рейтинг книги
30 сребреников

Небо в огне. Штурмовик из будущего

Политов Дмитрий Валерьевич
Военно-историческая фантастика
Фантастика:
боевая фантастика
7.42
рейтинг книги
Небо в огне. Штурмовик из будущего

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Блокада. Знаменитый роман-эпопея в одном томе

Чаковский Александр Борисович
Проза:
военная проза
7.00
рейтинг книги
Блокада. Знаменитый роман-эпопея в одном томе

Цикл "Отмороженный". Компиляция. Книги 1-14

Гарцевич Евгений Александрович
Отмороженный
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Цикл Отмороженный. Компиляция. Книги 1-14

Книга 4. Игра Кота

Прокофьев Роман Юрьевич
4. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
боевая фантастика
рпг
6.68
рейтинг книги
Книга 4. Игра Кота

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

Низший 2

Михайлов Дем Алексеевич
2. Низший!
Фантастика:
боевая фантастика
7.07
рейтинг книги
Низший 2

Под маской, или Страшилка в академии магии

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.78
рейтинг книги
Под маской, или Страшилка в академии магии