Чтение онлайн

на главную - закладки

Жанры

Гиперпространство
Шрифт:

Неожиданное введение высшей математики в физику посредством теории струн застало многих физиков врасплох. Немало ученых тайно ходили в библиотеку, чтобы заглянуть в толстые тома математической литературы и разобраться в десятимерной теории. Физик из ЦЕРНа Джон Эллис признается: «Я сам не сразу заметил, что стал все чаще заглядывать в книжные магазины и выискивать математические энциклопедии, чтобы вызубрить все эти гомологии, гомотопии и прочую математику, в которой прежде не удосуживался разобраться!» [167] Для тех, кого беспокоила неуклонно разрастающаяся брешь между математикой и физикой в нашем столетии, уже само это событие стало отрадным и исторически значимым.

167

Джон

Эллис, интервью. См.: «Суперструны: Теория всего?», под ред. Пола Дэвиса и Джулиана Брауна. С. 161.

Математика и физика традиционно неразделимы еще со времен древних греков. Ньютон и его современники никогда не проводили четкой границы между математикой и физикой, называли себя натурфилософами и чувствовали себя в своей стихии в отличающихся друг от друга мирах математики, физики и философии.

Гаусс, Риман и Пуанкаре отводили физике главное место как источнику новых математических методов. На протяжении XVIII–XIX вв. происходило интенсивное перекрестное опыление математики и физики. Но после Эйнштейна и Пуанкаре в развитии этих наук произошел крутой поворот. Последние 70 лет математики и физики почти не поддерживали связь друг с другом. Математики исследовали топологию N– мерного пространства и развивали такие новые дисциплины, как алгебраическая топология. Продолжая работу Гаусса, Римана и Пуанкаре, математики прошлого века создали арсенал абстрактных теорем и следствий, не имеющих никакого отношения к слабому или сильному взаимодействию. Однако физики приступили к изучению силы ядерного взаимодействия, пользуясь трехмерной математикой, известной в XIX в.

Все изменилось с появлением десятого измерения. Внезапно весь арсенал, собранный математикой за прошедший век, пригодился в мире физики. Чрезвычайно эффективные математические теоремы, давно лелеемые только математиками, обрели физический смысл. Казалось, теперь наконец зияющая брешь между математикой и физикой будет закрыта. В сущности, даже математиков ошеломил приток новых математических методов, введенных теорией. Некоторые видные математики, например Изадор Зингер из Массачусетского технологического института, заявляли, что, возможно, теорию суперструн следует рассматривать как одно из направлений математики, независимо от его физической релевантности.

Никто не имеет ни малейшего представления, почему так тесно переплелись математика и физика. Физик Поль Дирак, один из основателей квантовой теории, утверждал, что «математика способна повести нас в направлении, которое мы не выбрали бы, если бы следовали только идеям физики» [168] .

Альфред Норт Уайтхед, один из величайших математиков прошлого века, однажды сказал, что на глубинном уровне математика неотделима от физики. Однако точная причина удивительного взаимопроникновения наук остается неясной. Никто не может предложить даже рациональной гипотезы, объясняющей, почему две дисциплины обмениваются концепциями.

168

Процитировано в: Криз и Манн «Второе сотворение» (R. P. Crease and С. С. Mann, The Second Creation, New York: Macmillan, 1986), c. 77.

Часто можно услышать, что «математика — язык физики». Так, Галилео Галилей однажды сказал: «Никто не сумеет прочесть великую книгу Вселенной, не понимая ее языка — языка математики» [169] . Однако вопрос о причинах остается открытым. Более того, для математиков, вероятно, оскорбительна мысль о том, что вся их наука сводится к семантике.

Отмечая взаимосвязь наук, Эйнштейн полагал, что математика в чистом виде может оказаться одним из средств разгадки тайн физики: «Я убежден, что чисто математические построения помогают нам открывать концепции и законы, связывающие их, и дают нам ключ к пониманию природы… Следовательно, в некотором смысле я считаю правильными представления древних о том, что чистая мысль может постичь реальность» [170] . Гейзенберг эхом повторял ту же мысль: «Если природа подводит нас к математическим

формам удивительной простоты и красоты… с которыми никто прежде не сталкивался, невозможно не думать, что они „истинны“, что в них открываются подлинные свойства природы».

169

Процитировано в: Энтони Зи «Пугающая симметрия» (Anthony Zee, Fearful Symmetry, New York: Macmillan, 1986), c. 122.

170

Процитировано в: Энтони Зи «Пугающая симметрия» (Anthony Zee, Fearful Symmetry, New York: Macmillan, 1986), c. 274.

Лауреат Нобелевской премии Юджин Вигнер однажды даже написал очерк с откровенным заголовком «Необъяснимая эффективность математики в естественных науках» (Unreasonable Effectiveness of Mathematics in the Natural Sciences).

Физические принципы против логических структур

Много лет я убеждался в том, что математика и физика подчиняются определенной диалектике взаимоотношений. Физика — не просто бессмысленная, произвольная последовательность диаграмм Фейнмана и симметрий, а математика — не просто набор беспорядочных уравнений: скорее, физика и математика образуют симбиоз.

Я считаю, что физика в конечном счете опирается на небольшой набор физических принципов.В общем случае эти принципы можно выразить обычным языком, не обращаясь к математике. Основные физические принципы, начиная с теории Коперника и ньютоновских законов движения и вплоть до теории относительности Эйнштейна, можно изложить всего в нескольких предложениях, не прибегая к математике. Примечательно, что всего нескольких фундаментальных физических принципов достаточно, чтобы обобщить основной объем современной физики.

В отличие от физики математика — набор всех возможных самосогласованных структур,причем логических структур существует гораздо больше, чем физических принципов. Отличительная особенность любой математической системы (арифметики, алгебры, геометрии) — то, что ее аксиомы и теоремы согласуются друг с другом. Математики следят главным образом за тем, чтобы эти системы ни в коем случае не вступали в противоречие, и в меньшей степени заинтересованы в обсуждении сравнительных преимуществ одной системы перед другой. Любая самосогласованная структура из множества достойна изучения. В итоге математика гораздо более фрагментирована, чем физика; математики, специализирующиеся в одной области, обычно работают обособленно от математиков, специализирующихся в другой.

Взаимоотношения между физикой (основанной на физических принципах) и математикой (основанной на самосогласованных структурах) теперь очевидны: для решения физического принципа физикам может потребоваться много самосогласованных структур. Таким образом, физика автоматически объединяет многие обособленные направления математики.Если рассматривать ситуацию в таком свете, можно понять, как развиваются значительные идеи в теоретической физике. К примеру, и математики, и физики утверждают, что Исаак Ньютон — один из титанов именно в той науке, которой занимаются и они. Однако Ньютон начал изучать гравитацию не с математики. Рассматривая движение падающих тел, он пришел к выводу, что Луна постоянно падает на Землю, но не сталкивается с ней, потому что Земля под ней искривлена; кривизна Земли компенсирует падение Луны. В результате он пришел к постулированию физического принципа — закону всемирного тяготения.

Но поскольку решить уравнения гравитации Ньютон затруднялся, он приступил к 30-летнему процессу создания с нуля математических методов, достаточно эффективных для решения этих уравнений. По ходу дела он обнаружил множество самосогласованных структур, получивших общее название « исчисления»(calculus). В этом случае физический принцип появился первым (закон гравитации), а затем были разработаны разнообразные самосогласованные структуры, необходимые для решения (такие как аналитическая геометрия, дифференциальные уравнения, производные и интегралы). Физический принцип объединил эти разнообразные самосогласованные структуры в связный математический корпус (calculus).

Поделиться:
Популярные книги

Кодекс Крови. Книга IV

Борзых М.
4. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IV

Девятый

Каменистый Артем
1. Девятый
Фантастика:
боевая фантастика
попаданцы
9.15
рейтинг книги
Девятый

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Саженец

Ланцов Михаил Алексеевич
3. Хозяин дубравы
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Саженец

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника

Вамп

Парсиев Дмитрий
3. История одного эволюционера
Фантастика:
рпг
городское фэнтези
постапокалипсис
5.00
рейтинг книги
Вамп

Инвестиго, из медика в маги 2

Рэд Илья
2. Инвестиго
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Инвестиго, из медика в маги 2

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

Хозяин Теней 2

Петров Максим Николаевич
2. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Хозяин Теней 2

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Двойник Короля 2

Скабер Артемий
2. Двойник Короля
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Двойник Короля 2