Гитара без мифологии
Шрифт:
Второе: влияет ли несущая конструкция электрогитары на звучание?
Однозначно, ДА. И в акустических и в электрических струнных инструментах звучание формируется в струне, и качество и характер этого звучания в огромной мере зависит от качества динамической эквализации, создаваемой резонансами несущей конструкции. При этом индукционные датчики так же создают динамическую эквализацию своими резонансами.
Третий вопрос более изощрённый: влияет ли гриф гитары на звучание?
Влияет, причём у электрогитары-боди резонанс грифа самый
Четвёртый: можно ли статичной эквализацией исправить недостатки динамической?
В очень ограниченных пределах. Если динамическая эквализация некой гитары такова, что она звучит как консервная банка, с помощью статичной эквализации электронного эквалайзера вы сможете получить звучание другой консервной банки, и даже жестяного ведра, но никак не хорошей гитары.
Означает ли это, что статичная эквализация совсем бесполезна? Вовсе нет, наилучшее звучание получается благодаря грамотному сочетанию обоих видов эквализации.
***
Далеко не праздный вопрос: сколько резонансов нужно для хорошего звучания? Чем больше, тем лучше? Разумеется, это не так. Если частоты хотя бы двух резонансов при некоторой добротности сблизятся настолько, что уменьшится разница между минимумами и максимумами АЧХ в диапазоне этих резонансов, то оба они потеряют выразительность, что ухудшит звучание инструмента в целом. Схождение резонансов – очень распространенная ошибка, как плохих мастеров, так и неграмотных разработчиков в серийном производстве.
Желательно, чтобы диаграмма частота-упругое сопротивление состояла сплошь из наклонных линий.
Получается, увеличивая количество резонансов, мы должны повышать их добротность. И насколько же мы можем их повысить? До каких пределов?
Загвоздка в том, что детали несущей конструкции при игре совершают не только вынужденные колебания на частотах колебаний струн (почти), но и свободные на своих собственных частотах, воруя для этого энергию у струн. И чем выше добротность резонансов этих деталей, тем больше амплитуда и длительней сустейн их собственных колебаний.
При оптимальных значениях добротности эти колебания очень толково прикидываются реверберацией, но при значениях выше оптимальных образуют неприятный гул. Он тем более неприятен, что не вписывается ни в одну тональность, поскольку детали несущей настраиваются в четверть тона от хроматических ступеней.
Так мы попадаем в жёсткие рамки: низкая добротность резонансов приводит к невыразительному звучанию, а слишком высокая к гулу.
Для достижения хорошего звучания добротность резонансов несущей конструкции должна находиться в узких оптимальных пределах.
Поэтому не имеет смысла располагать резонансы ближе 9-ти
1.5. Декремент затухания как удельное свойство материала
А есть у материала свойство, влияющее на добротность резонанса физического тела? У металлических струн, особенно у дискантов, сустейн заметно длительней, чем у нейлоновых. У металлофона он в разы длительней, чем у ксилофона. Несомненно, материал обладает как минимум, одним свойством, определяющим декремент затухания тела. И называется оно так же: логарифмический декремент затухания. Учёные мужи не удосужились придумать для этого свойства собственное название. Поэтому приходится различать ЛДЗ как характеристику тела или конструкции, и ЛДЗ как удельное свойство материала.
В общих чертах, ЛДЗ как свойство материала – это ЛДЗ некого стандартного образца из этого материала при некоторых стандартных условиях. И это очень важная характеристика материала для музыкальных инструментов. В первую очередь, оно оказывает сильное влияние на добротность резонансов физических тел.
Как мы помним, для хорошего звучания добротность резонансных тел должна находиться в некоторых оптимальных пределах. Соответственно, эти тела, проще говоря, детали инструментов очень желательно изготавливать из материалов с оптимальными показателями по ЛЗД.
Да, друзья, пригодность материала в качестве резонансного определяется не принадлежностью к древесинам, не способом просушки, не фактурой, не ценой, не плотностью, не страной произрастания, а в первую очередь показателем логарифмического декремента затухания.
Остаётся неясным, как нейлоновые струны умудряются сохранять строй, ведь декремент нейлона даже выше, причём намного, чем у древесины. Почему же нейлоновые струны не подвергаются сильным девиациям? Чтобы с этим разобраться, нужно ознакомиться с таким явлением, как
1.6. Механическое напряжение
Про электрическое напряжение нам рассказывали в школе, а про механическое (обозначается строчной греческой буквой сигма),
забыли рассказать. А оно гораздо проще для понимания.
Если вы сожмете рукой обычный кистевой эспандер, почувствуете силу, стремящуюся распрямить эспандер, и чем дольше будете его удерживать, тем лучше будете её чувствовать. Когда же вы его отпустите, он примет обычную свою форму.