Глаз, мозг, зрение
Шрифт:
Окончательная картина чередования полос для левого и правого глаза в корковом слое 4C развивается нормально даже в том случае, если оба глаза закрыты путем сшивания век; это означает, что надлежащие связи могут создаваться и без участия индивидуального опыта. Мы полагаем, что в процессе развития входные волокна от обоих глаз конкурируют в слое 4C таким образом, что если входы от одного из глаз в каком-то месте преобладают, то преимущество этого глаза имеет тенденцию увеличиваться, а число входов от другого глаза соответственно убывает. Даже небольшое начальное неравенство при этом стремится постепенно возрастать до тех пор, пока всюду в слое 4 в возрасте одного месяца не появятся отчетливые полоски с полным доминированием. При закрытом глазе баланс нарушается, и на границах полосок, где в норме исход борьбы решает прямое столкновение, открытый глаз получает преимущество и одерживает верх, что показано на рис. 148.
Мы не знаем, что при нормальном развитии
Рис. 148. Эта «конкурентная модель» объясняет разделение волокон четвертого слоя на колонки глазодоминантности. К моменту рождения колонки уже начали формироваться. В норме, если в какой-то точке один глаз хотя бы незначительно доминирует, это оканчивается его полной монополией. Если один глаз при рождении закрыт, то сохранившиеся волокна от открытого глаза в любой данной точке слоя 4 полностью одерживают верх. Волокна от закрытого глаза сохраняются только там, где в момент закрытия у них не было конкурентов.
Тем временем Рэй Гиллери, работавший тогда в Висконсинском университете, предложил правдоподобное объяснение атрофии клеток в коленчатом теле. Изучая наши рисунки, демонстрирующие сморщивание клеток после закрытия одного глаза у кошек, он заметил, что в участках коленчатого тела, наиболее удаленных от средней линии, сморщивание было значительно меньшим; действительно, там — в проекции височной серповидной области — клетки казались вполне нормальными. Здесь отображается боковой край зрительного поля, настолько удаленный от середины, что его может видеть лишь один глаз этой стороны (рис. 149). Мы были огорчены, если не сказать больше, ибо настолько увлеклись измерением клеток с целью подтвердить наши выводы, что просто забыли как следует рассмотреть собственные микрофотографии. Ведь отсутствие атрофии клеток со входами от «височного серпа» означало, что атрофия в других местах коленчатого тела, и в самом деле, могла быть результатом конкуренции со стороны другого глаза.
Рис. 149. Различные участки обеих сетчаток проецируются на их собственные зоны в правом коленчатом теле кошки (которое показано здесь в поперечном сечении). Верхний слой коленчатого тела, получающий входные волокна от контралатерального (левого) глаза, нависает над следующим слоем. Свешивающаяся часть получает входы от височного серповидного участка поля зрения, который проецируется на сетчатку только одного глаза. При закрытии этого глаза свешивающаяся часть не атрофируется — предположительно потому, что не встречает конкуренции со стороны другого глаза, в котором соответственного участка нет.
С помощью весьма остроумного эксперимента, показанного на рис. 150, Маррей Шерман и его коллеги представили решающие доказательства роли конкуренции в атрофии клеток коленчатого тела. Сначала они разрушили у котенка крошечный участок одной сетчатки в области бинокулярного поля зрения. Затем они плотно зашили другой глаз. В небольшой зоне того слоя коленчатого тела, на который проецировался глаз с локальным повреждением, была обнаружена сильно выраженная атрофия. Этот результат получили и многие другие исследователи. В слое, имевшем входы от другого, ранее закрытого глаза, как и ожидалось, они тоже наблюдали сморщивание клеток повсюду, кроме зоны, подвергшейся атрофии в слое с проекцией другого глаза. Там, несмотря на отсутствие входных сигналов от глаза, клетки были нормальными. Атрофия, обусловленная закрытием глаза, была предотвращена путем исключения конкуренции. Ясно, что конкуренция не могла происходить в самом коленчатом теле;
Рис. 150. В 1974 году эксперимент Шермана, Гиллери, Кааса и Сандерсона продемонстрировал значение конкуренции для атрофии клеток наружного коленчатого тела. Если разрушить у котенка небольшой участок левой сетчатки, то в соответствующей части верхнего слоя правого наружного коленчатого тела образуется островок сильно выраженной атрофии. Если затем закрыть правый глаз, то, как и можно было ожидать, слой, расположенный ниже, подвергается атрофии, за исключением участка, лежащего прямо под атрофированным участком верхнего слоя. Этот факт служит сильным доводом в пользу конкурентной природы атрофии, вызываемой закрытием глаза.
Открытие того факта, что при рождении во всем слое 4 без каких-либо перерывов представлены волокна от обоих глаз, оказалось весьма полезным, так как оно объясняло, каким образом могла бы реализоваться конкуренция на синаптическом уровне в структуре, в которой, казалось бы, нет никаких возможностей для взаимодействия глаз. И все-таки проблема может оказаться не такой простой. Если причина изменений в слое 4 — то, что в первые недели после рождения здесь существуют условия для конкуренции, то закрытие глаза в возрасте, когда система еще пластична, а колонки уже разделены, не приводило бы к возникновению изменений. Мы закрывали глаз в возрасте пяти с половиной недель и только через год вводили метку в другой глаз. Результатом было четкое сужение и расширение соответствующих полос. Это как будто бы указывает на то, что помимо дифференцированного втягивания окончаний возможно и прорастание их на новую территорию.
Во всех описанных до сих пор исследованиях мы закрывали один или оба глаза или же перерезали наружные мышцы одного из глаз. Вскоре во многих лабораториях было проведено множество других экспериментов, включающих чуть ли не все мыслимые виды зрительной депривации. В одном из первых и наиболее интересных экспериментов ставился вопрос, будет ли содержание животного в условиях, позволяющих ему видеть полоски лишь одной ориентации, приводить к утрате клеток, чувствительных ко всем иным ориентациям. В 1970 году Колин Блейкмор и Дж. Ф. Купер из Кембриджского университета ежедневно с раннего возраста показывали котятам в течение нескольких часов чередующиеся черные и белые вертикальные полосы, а в остальное время содержали их в темноте. Результатом было сохранение корковых клеток, реагирующих на вертикальные полосы, и резкое уменьшение числа клеток, предпочитающих другие ориентации. Неясно, перестали ли клетки с исходно промежуточными ориентациями отвечать вовсе или они сменили предпочитаемое направление на вертикальное. В опубликованной в том же году работе Хельмут Хирш и Нико Спинелли использовали очки, позволявшие котенку видеть одним глазом только вертикальные, а другим — только горизонтальные контуры. В результате получилась кора, содержащая клетки с предпочтением вертикалей, клетки с предпочтением горизонталей, но очень мало клеток, предпочитающих наклонные линии. Кроме того, на клетки, активируемые горизонтальными линиями, влиял лишь тот глаз, который подвергался раньше воздействию горизонтальных линий, а на клетки, возбуждаемые вертикальными линиями, — лишь глаз, подвергавшийся воздействию вертикальных линий.
Другие интересные процедуры включали выращивание животных в темном помещении, в котором один или несколько раз в секунду вспыхивал яркий импульс света; он позволял животному увидеть, где оно находится, но должен был сводить к минимуму восприятие любого движения. Результатом этих экспериментов, которые проводили в 1975 году Макс Цинадер, Нэнси Берман и Алан Хейн в Массачусетсском технологическом институте, а также М. Цинадер и Г. Черненко в Далхауси (Галифакс), было уменьшение числа клеток, чувствительных к движению. В другой серии экспериментов, которую начали Ф. Треттер, М. Цинадер и Вольф Зингер в Мюнхене, животным показывали только движение полосок слева направо и получили ожидаемое асимметричное распределение в коре клеток, чувствительных к направлению движения. С большими трудностями и затратами мы с Торстеном Визелом выращивали детеныша обезьяны в комнате, освещаемой лишь длинноволновым красным светом, а затем регистрировали ответы клеток наружных коленчатых тел, чтобы выяснить, не окажется ли здесь необычно мало цветокодирующих нейронов (см. гл. 8). Какой-либо аномалии в коленчатых телах обнаружить не удалось.