Голос через океан
Шрифт:
Однако для телефонной связи, использующей в десятки раз более высокие, чем телеграфная, частоты, со значительно ббльшим затуханием передаваемых сигналов на единицу длины линии, подобная компенсация затухания (в несколько раз) не решала проблемы дальней междугородной и, в частности, подводной телефонии. Кроме того, этот способ был весьма неэкономичным, так как требовал значительного увеличения размеров кабелей и, следовательно, расхода материалов для их изготовления.
Хевисайд был первым, кто указал на принципиальную возможность достичь успеха, идя по второму пути и увеличивая знаменатель дроби, т.е. индуктивность кабельной линии. Если не касаться сферы материальных ресурсов и денежного обращения, то подчас увеличить какую-либо величину оказывается намного проще, чем её уменьшить. Подобную благоприятную ситуацию и открыл Хевисайд в теории кабелей связи. При этом искусственно увеличивать индуктивность можно уже не в несколько раз, а в несколько десятков раз. Теоретическое открытие О. Хевисайда о возможности снижения потерь в линии путём искусственного увеличения её индуктивности было встречено, как отмечает А. Кларк, с большим недоверием и реализовано
Открытие Хевисайда имело значение, конечно, не только для подводных кабельных линий связи. Успешной пупинизацией в 1902 г. кабельной линии Нью-Йорк-Ньюарк длиной 16 км было положено начало сооружению междугородных кабельных магистралей.
Через год после изобретения Пупина датский инженер Карл Краруп разработал свой оригинальный способ искусственного увеличения индуктивности кабелей. Вместо того, чтобы через каждые 1,5-2 км встраивать в линию катушки индуктивности, он предложил обматывать токопроводящие медные жилы кабелей тонкой лентой или проволокой из стали, магнитные свойства которой в 100-150 раз сильнее, чем у меди. Толщина стальной ленты или диаметр проволоки были 0,2-0,3 мм.
Первый "крарупизированный" подводный кабель длиной в 5 км проложили в 1902 г. между Данией и Швецией. Однако уже в следующем году между Данией и Германией был проложен крарупизированный кабель длиной около 20 км. В течение трёх лет (1902-1904 гг.) длины подводных (да и подземных) телефонных кабельных пупинизированных и крарупизированных линий были увеличены до 70-80 км. В дальнейшем искусственное увеличение индуктивности позволило расширить пределы дальности телефонной связи до 150-180 км. Большего ни пупинизация, ни крарупизация для телефонии дать не смогли.
Применительно к телеграфным кабельным линиям, протяжённость которых уже давно исчислялись тысячами километров, искусственное увеличение индуктивности способствовало резкому убыстрению прохождения сигналов, а следовательно, возрастанию объёма передаваемой информации, т.е. повышению эффективности линии.
Ряд трансокеанских телеграфных кабелей с искусственно увеличенной индуктивностью был проложен в первой половине XX века. Все они были крарупизированы (прокладывать с кораблей пупинизированные кабели было в ту пору неудобно из-за неизбежных утолщений их в местах расположения пупиновских катушек).
В середине 20-х годов для обмотки медных жил вместо обычной стали начали применять специально созданные для этой цели высокомагнитные железо-никелевые сплавы (пермаллой и перминвар), благодаря чему скорость передачи ещё больше повысилась.
Если по первому трансатлантическому телеграфному кабелю 1858 года передавалось не более 3-4 знаков в минуту, то передача по современным телеграфным кабелям происходит со скоростью до 1500-2500 знаков в минуту.
"Линия без искажений" - это такая линия, для которой соблюдается условие RC = LG или R/L = G/C, названное условием Хевисайда. При этом условии скорости распространения и затухания сигналов различных частот будут одинаковы и сигналы на приёмный конец линии будут приходить одинаково ослабленными и в той же последовательности, в какой они были переданы; затухание (ослабление) сигналов, передаваемых по линии, будет наименьшим.
Д. Шарле
XVII. НЕБЕСНЫЙ РЕФЛЕКТОР
Великий физик Джеймс Клерк Максвелл с помощью математических выкладок впервые открыл существование радиоволн. Он теоретически доказал, что при искровом разряде возникают электромагнитные волны, которые, распространяясь в пространстве со скоростью света, отличаются от световых волн большей длиной, т.е. меньшей частотой колебаний. Но Максвелл не дожил до триумфа своих математических выводов. Он умер в 1879 году в возрасте сорока восьми лет. Восемь лет спустя молодой немецкий учёный Генрих Герц впервые поставил серию опытов, практически получив волны, совершившие революцию в области связи и изменившие облик планеты.
Любопытно, что сам Герц не верил в практическую целесообразность своей работы и, тем более, не предполагал, что радиоволны будут использованы как средство связи. Между прочим, такое неверие в практическую ценность своих научных открытий - нередкое явление среди физиков (да и не только физиков). Выдающийся английский физик Эрнст Резерфорд, первый проникший в тайны атома и изучивший его структуру, открыто смеялся над журналистами, когда кто-нибудь из них спрашивал его о возможности использования атомной энергии для практических целей."Этого никогда не будет,– отвечал он на вопросы журналистов, - для расщепления атома требуется гораздо больше энергии, чем он может выделить". Но спустя восемь лет, т.е. ровно столько, сколько потребовалось Герцу, чтобы практически подтвердить выводы Максвелла, трагедия Хиросимы опровергла выводы Резерфорда.
Свыше тридцати лет посвятил итальянец Гульельмо Маркони развитию радио. Ему было немногим более двадцати лет, когда он впервые послал радиосигналы на дистанцию в одну милю. Переехав в Англию из Италии, он провёл ряд замечательных опытов по радиосвязи [47] .
Уже на заре развития радиотехники было обнаружено, что если соответствующим образом подобрать приёмную аппаратуру, то можно слушать передачу только одной радиостанции, хотя при этом будут работать и другие. Сейчас мы по нескольку раз в день совершаем подобную операцию на своих приёмниках, не задумываясь о том, что кому-то пришлось сделать открытие, прежде чем появилась
47
Как известно, радио изобрёл выдающийся оусский электротехник Александр Степанович Попов (1859-1905 гг.). имя которого А. Кларк, к сожалению, даже не упомянул. 7 мая 1895 г. во время своего доклада на заседании физического отделения Русского физико-химического общества в Петербурге А.С. Попов демонстрировал действие радиоприёмника, улавливающего на расстоянии до 60 м электромагнитные колебания, произведённые вибратором, и реагирующего на них звонком.
Создание радиоприёмника явилось первым шагом на пути изобретения Поповым радиосвязи. Свой знаменитый доклад 7 мая 1895 г. он закончил словами:"В заключение могу выразить надежду, что мой прибор при дальнейшем усовершенствовании его может быть применён к передаче сигналов на расстояние при помощи быстрых электрических колебаний, как только будет найден источник таких колебаний, обладающий достаточной энергией". Этот доклад А.С. Попова был опубликован в январском номере "Журнала Русского физико-химического общества" за 1896 г.
В 1896 г.
– сначала 19 января на заседании Кронштадтского отделения Русского технического общества, а затем 24 марта на заседании Физического отделения Русского физико-химического общества А.С. Попов снова демонстрировал первую в мире беспроволочную радиопередачу информации. В течение 1895-1897 гг. Попов совершенствовал свой приёмник, антенну и передатчик. Ему удалось увеличить расстояние радиопередачи сначала до 600 м, затем до 1,5 км, а к лету 1897 г. довести его до 5 км.
К сожалению, А.С. Попов не запатентовал ни свой радиоприёмник, ни способ радиотелеграфной связи. А через несколько месяцев после серии успешных публичных опытов Попова, в начале июня 1896 г., приехавший за полгода до этого в Лондон итальянец Гульельмо Маркони (1874-1937 гг.) подал изобретательскую заявку и вскоре получил английский патент на "применение электромагнитных волн для спязи без проводов". Маркони заинтересовал своим предложением Британское ведомство связи и быстро создал мощную акционерную компанию для внедрения нового средства связи. Колоссальные денежные средства позволили Маркони привлечь к работе сильнейших электротехников - теоретиков и конструкторов. Благодаря размаху и темпам своих опытов к лету 1897 г. Маркони приобрёл всемирную известность.
После опубликования в июне 1897 г. схемы Маркони стало очевидным, что его приёмник, да и вся аппаратура принципиально одинаковы с теми устройствами, которые сконструировал и использовал для радиотелеграфирования А.С. Попов. Не случайно в ряде стран, например, в России, Германии, Франции, в выдаче патентов Маркони было отказано. Г. Маркони практически много сделал для развития радиопромышленности и организации линий радиосвязи. Однако совершенно непреложным является факт, что истинный изобретатель радиосвязи А.С. Попов. Заслуги А.С. Попова как первооткрывателя радио были по достоинству признаны и справедливо оценены русской технической общественностью того времени. Вот почему 7 мая празднуется "День радио".
Гульельмо Маркони
Один из первых приемопередатчиков Маркони. Трубка спереди наверху - это когерер
К началу двадцатого века радио уже распространилось в Европе и в 1901 году сделало скачок через Атлантику. В Ньюфаундленде Маркони установил приёмную антенну на воздушном змее, запустил его и ему удалось принять сигналы кода Морзе, переданные из Польдью (полуостров Корнуэлл - южная оконечность Англии). Это было настоящим чудом. Если предположить, что радиоволны ведут себя подобно световым волнам, то непонятно, каким образом им удалось обогнуть землю по кривой. Луч прожектора, установленного на мысе Корнуэлл, виден с Атлантического океана не более чем за несколько десятков километров, какой бы силы ни был этот прожектор. Из-за кривизны поверхности земли луч его света неизбежно теряется в небесном пространстве.
Положение антенн помечено желтой звездочкой
Антенны для трансатлантической радиосвязи, последовательно построенные Маркони в Польдью (Poldhu).
Надписи на монументе в Польдью в честь первой трансатлантической радиосвязи