Чтение онлайн

на главную - закладки

Жанры

Гравитация. От хрустальных сфер до кротовых нор

Петров Александр Николаевич

Шрифт:

В лаборатории Германа Гельмгольца (1821–1894), немецкого физика, математика, физиолога и психолога, в 1888 году проводились рядовые опыты с вибратором Генриха Герца (1857–1894). Лейденская банка разряжалась на диполь (он фактически представляет собой антенну с двумя лепестками). Такой же диполь стоял неподалеку. И лаборант заметил маленькую искорку в этом соседнем диполе!

Стало понятно, что это и есть результат воздействия волны, поисками которой все озабочены. Сам Герц принял деятельное участие в экспериментальном подтверждении электромагнитной теории Максвелла. Он не только экспериментально доказал существование электромагнитных волн, но впервые начал изучать их свойства – поглощение и преломление в разных средах, отражение от металлических поверхностей и т. п. Ему удалось измерить на опыте длину волны и скорость ее распространения, которая оказалась равной скорости света.

Опыты Герца сыграли решающую роль в признании электромагнитной

теории Максвелла. Это была прямая демонстрация существования электромагнитного излучения. Затем было открыто рентгеновское излучение, понято, что свет – это тоже электромагнитное излучение. Стало ясно, что разные виды излучения имеют одну природу, но разные частоты (длины волн).

Давайте в поле электромагнитной волны поместим прибор, измеряющий электрическое и магнитное поле. Прибор обнаружит, что вектор электрического поля E и вектор индукции магнитного поля B колеблются, причем они ортогональны между собой, определяя плоскость. Теперь, в направлении ортогональном этой плоскости разместим несколько таких приборов. Они и определят наличие волны: распространение колебаний векторов E и B, причем всегда совместное.

То, что векторы электрического поля E и индукции магнитного поля B ортогональны между собой и вместе ортогональны направлению распространения означает, что электромагнитная волна – поперечная. В вакууме скорость распространения v = c.

Кроме описанной «одиночной» волны, решение уравнений Максвелла допускает еще одну волну, распространяющуюся одновременно с первой и в противофазе с ней. Векторы электрического поля и индукции магнитного поля второй волны перпендикулярны соответствующим векторам первой волны. Поэтому, в общем случае, говорят, что электромагнитная волна имеет две поляризации.

Рис. 10.1. Диполь Герца

А как генерируются электромагнитные волны? Оказывается, они возбуждаются только ускоренно движущимися зарядами. Постоянный ток, при котором носители заряда движутся с неизменной скоростью, не является источником электромагнитных волн.

Простейшей системой, излучающей электромагнитные волны, является электрический диполь – система с двумя зарядами разных знаков q, разнесенных на расстояние l (рис. 10.1). Если дипольный момент такой системы p(t) = q(t)l изменяется, то мощность электромагнитного излучения пропорциональна квадрату его второй производной по времени (т. е. ускорению).

В радиотехнике диполь Герца эквивалентен небольшой антенне, размер которой много меньше длины волны . В современной радиотехнике излучение электромагнитных волн производится с помощью антенн различных конструкций, в которых возбуждаются быстропеременные токи.

Описание гравитационных волн

Термин «гравитационные волны» ввел сам Эйнштейн вместе с публикацией ОТО. Немного позднее он опубликовал еще одну статью, уточняющую заявление о гравитационных волнах. Точно так же, как и в электродинамике, должно быть излучение, которое может оторваться от источника и существовать независимо, распространяясь со скоростью света. Только мощность этого излучения в обычных условиях должна быть чрезвычайно малой.

Как можно прийти к выводу о существовании гравитационных волн наиболее простым способом? Рассмотрим метрику gab какого-либо пространства-времени. Предположим, что она незначительно отличается от метрики пространства Минковского. Напомним, что последняя в лоренцевых координатах представлена диагональной матрицей ab = diag (1, –1, –1, –1). Возмущения реальной метрики пространства-времени по отношению к метрике Минковского можно представить соотношением gab = ab + hab.

Теперь, давайте, подставим gab в этом виде в уравнениях ОТО без источников (без материальной части) и сохраним только линейную часть по hab.

В результате для hab получим точно такие же волновые уравнения, как уравнения Максвелла для электрического поля или магнитной индукции. Причем уравнения показывают, что волна возмущений hab также распространяется со скоростью света в плоском пространстве-времени.

Какой же физический смысл распространяющейся волны hab? Еще раз напомним, что метрика определяет способ измерения расстояний в пространстве-времени. Следовательно, величины hab должны определять насколько и как этот способ будет возмущен. Образно можно представить себе гравитационную волну как мелкую «рябь», бегущую «по плоскости» пространства Минковского. Аналогично, метрические бегущие возмущения можно рассмотреть по отношению к какому-либо известному (фиксированному) искривленному пространству-времени. Например, если распространяющиеся возмущения рассматривают по отношению к космологическим решениям, то это гравитационные волны во Вселенной. Здесь уместно сравнение с мелкой «рябью» на поверхности океана, причем большой радиус кривизны мирового океана можно сравнить с фоновой кривизной пространства-времени Вселенной.

Легко понять, как гравитационные волны действуют на частицы и материю вообще. Их взаимодействие с макроскопическими телами можно сравнить с качанием «лодки» на ряби «фонового океана». Подобно тому, как заряженная частица в поле электромагнитной волны начинает совершать колебания, взаимодействие гравитационной волны с макроскопическими телами приводит к их движению. Появляются относительные ускорения между телами, и это приводит к изменению физического расстояния между ними.

В общем случае, в силу симметрии по индексам, метрическое возмущение hab представляет 10 независимых компонент (величин). Какой физический смысл имеют эти величины, и все ли они имеют физическое (наблюдаемое) значение? Вспомним, что уравнения ОТО допускают изменения координат. При этом выбор различных систем координат не сказывается на физических эффектах, но может значительно упростить выражения. Воспользуемся этой свободой. В случае слабой плоской гравитационной волны, которую мы и рассматриваем, это позволяет наложить 8 условий на hab, обращая 8 компонент из 10-ти в нуль.

Таким образом избавляются от так называемых нефизических степеней свободы. Оставшиеся две компоненты, для которых приняты обозначения h+ и hx, уже невозможно уничтожить никакими координатными преобразованиями, они описывают реальное воздействие гравитационной волны на пробные частицы. Их называют физическими степенями свободы.

Итак, гравитационная волна в ОТО имеет две степени свободы (поляризации). Как и электромагнитная, она является поперечной. Ее действие описывается следующим образом. В плоскости, перпендикулярной распространению, расположим по окружности пробные массивные частицы, как на рис. 10.2. Под действием одной из поляризаций волны окружность будет деформироваться в пульсирующий эллипс, большая и малая оси которого будут поочередно переходить одна в другую. Для другой поляризации ось соответствующего эллипса расположена под углом 45o к оси первого эллипса. В общем случае действием волны будет суперпозиция этих двух смещений.

Относительное изменение расстояния между двумя пробными частицами в поле плоской гравитационной волны определяется выражением l/l h/2. Это соотношение показывает, что по своему физическому смыслу амплитуда является безразмерной величиной. Часто ее называют «безразмерной амплитудой возмущений метрики», создаваемых гравитационной волной. Кроме того, важен угол между направлением распространения волны и отрезком, соединяющим частицы. В силу поперечного характера, если эти направления совпадают (угол нулевой), то эффекта не будет, если они ортогональны, то эффект максимален.

Поделиться:
Популярные книги

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

Чехов. Книга 2

Гоблин (MeXXanik)
2. Адвокат Чехов
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Чехов. Книга 2

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Огромный. Злой. Зеленый

Новикова Татьяна О.
1. Большой. Зеленый... ОРК
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Огромный. Злой. Зеленый

Истребитель. Ас из будущего

Корчевский Юрий Григорьевич
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.25
рейтинг книги
Истребитель. Ас из будущего

Купец IV ранга

Вяч Павел
4. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец IV ранга

Боярышня Евдокия

Меллер Юлия Викторовна
3. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Евдокия

Боги, пиво и дурак. Том 4

Горина Юлия Николаевна
4. Боги, пиво и дурак
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 4

Адвокат империи

Карелин Сергей Витальевич
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.75
рейтинг книги
Адвокат империи

Я тебя не отпускал

Рам Янка
2. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.55
рейтинг книги
Я тебя не отпускал

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Сирота

Шмаков Алексей Семенович
1. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Сирота

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали