Чтение онлайн

на главную - закладки

Жанры

Характер Физических Законов
Шрифт:

Если же поместить детектор в какую-нибудь точку, находящуюся от отверстия 2на большем расстоянии, чем от отверстия 1, то волне, идущей из отверстия 2, понадобится больше времени, чтобы добраться до этой точки, чем волне, идущей от отверстия 1. Поэтому в тот момент, когда в эту точку приходит гребень очередной волны, идущей от отверстия 1, волна, идущая от отверстия 2, может еще не достичь своего максимума и даже может быть в самой низшей точке, так что под действием одной волны вода пытается подняться, а под действием другой - опуститься, в результате чего она вообще не волнуется, или практически не волнуется. Так что в этой точке мы наблюдаем низкую интенсивность волнения.

Затем, если сдвинуться от центра еще дальше, наступает момент, когда запаздывание между волнами

от двух источников таково, что гребни обеих волн попадают в нашу точку одновременно, хотя один из этих гребней и принадлежит на самом деле следующей по порядку волне. Вот поэтому мы и получаем кривую, на которой за всплеском интенсивности следует провал, потом опять всплеск, опять провал... и все это в зависимости от характера "интерференции" гребней и впадин. Понятие интерференции - еще один пример необычного употребления повседневных слов {9}

В физике возможна такая интерференция, в результате которой суммарное волнение оказывается сильнее индивидуальных. Но самое важное, что I 12не получается в виде суммы I 1и I 2. Интерференция между двумя волнами приводит к усилению интенсивности в одном месте и к ослаблению в другом. Выяснить, на что похожи кривые I 1и I 2, можно, закрывая по очереди одно из отверстий во втором экране и оставляя другое открытым. Очевидно, что в этом случае никакой интерференции нет, и соответствующие кривые показаны на рис. 31. Как нетрудно заметить, I 1имеет тот же характер, что и N 1в задаче с пулями, а I 2похожа на N 2и, несмотря на это, I 12не имеет ничего общего с N 12.

Математика образования I 12на самом деле довольно интересна. Дело в том, что высота воды, которую мы будем обозначать через h, в случае когда открыты оба отверстия, равна сумме высот, создаваемых волнением в случае одного открытого отверстия 1и в случае одного открытого отверстия 2. Поэтому, если из отверстия 2приходит впадина волны, соответствующая высота hотрицательна и она компенсирует положительную высоту hдля волны, пришедшей из отверстия 1. Волнение воды можно характеризовать ее высотой, но оказывается, что интенсивность волнения в любом случае, например тогда, когда открыты оба отверстия, не совпадает с высотой воды в данной точке, а пропорциональна квадрату этой высоты. И именно потому, что мы имеем дело с квадратами, получаем наши очень интересные кривые:

h 12= h 1+ h 2

но

Это о волнении воды. Теперь об электронах (рис. 32), и снова с самого начала. В качестве источника возьмем накаленную нить, в качестве экранов - вольфрамовые пластинки с отверстиями, а в качестве детектора-любую электрическую систему с чувствительностью, достаточной для того, чтобы зарегистрировать заряд, приносимый электроном, независимо от мощности нашего источника. Если вам больше нравится, мы можем взять фотоны, вместо вольфрамовых пластинок - черную бумагу (но, по правде говоря, это не будет очень хорошая замена, ибо в бумаге, как и во всяком другом волокнистом материале, невозможно сделать отверстия с очень ровными краями, и нам придется поискать что-нибудь получше), а в качестве детектора выбрать фотоумножитель, регистрирующий приход каждого фотона.

Так что же произойдет в том или другом случае? Я расскажу вам лишь об опыте с электронами, потому что для фотонов все получается точно таким же образом.

Прежде всего мы заметим, что наш электрический детектор, на выходе которого мы поставим достаточно мощный усилитель, все время щелкает: электроны попадают в него дискретно, строго по порциям. Каждый щелчок - это заряд

определенной величины, и эта величина все время постоянна. Если вы уменьшите накал источника, щелчки будут все реже, но все равно заряд каждого щелчка тот же, что и раньше. Если же усилить накал, щелчки посыплются, как из мешка, и в усилителе возникнет затор. Поэтому, для того чтобы прибор, который вы собираетесь использовать в качестве детектора, работал, нужно выбрать такой накал нити, при котором щелчки происходили бы не слишком часто.

Затем, если поместить в другом месте другой точно такой же детектор и проследить за их работой одновременно, можно заметить, что никогда не бывает двух щелчков, происходящих одновременно, по крайней мере если накал достаточно слаб, а точность фиксации времени щелчка удовлетворительна. Если уменьшить интенсивность источника гак, чтобы щелчки стали редкими и достаточно разнесенными друг от друга, то одновременно щелчков в обоих детекторах не бывает. А это значит, что возникающие события происходят дискретно, порциями, причем у каждой порции вполне определенная, постоянная для всех величин, и что в данный момент времени такая порция может находиться лишь в одном месте.

Итак, электроны или фотоны попадают в детектор по одному, дискретно, порциями. Поэтому мы можем поступить так же, как и в случае с пулями: мы можем измерить вероятность появления. Для этого нам нужно периодически менять положение детектора (конечно, если хочется, мы можем, хотя это и дорого, установить целую серию детекторов на поверхности последнего экрана и снимать кривую одновременно во всех точках), оставляя его в каждой конкретной точке, скажем, в течение часа, и записывать в конце этого часа число зарегистрированных электронов, а затем усреднить это число. Так что же мы получим для числа зарегистрированных электронов? Кривую N 12того же типа, что и в опыте с пулями? Кривая N 12, соответствующая случаю, когда оба отверстия открыты, показана на рис. 32. Как видите, экспериментально установлено, что эта кривая оказывается такой же, как и в опыте с интерференцией волн. Но чему же соответствует эта кривая? Не энергии, заключенной в волнении, а вероятности попадания одной из этих порций в детектор.

Соответствующие математические выкладки чрезвычайно просты. Мы заменили Iна N, так что нам придется заменить hна что-то другое, совсем новое, - это никакая не высота, - в связи с чем мы и придумаем параметр a, который будем называть амплитудой вероятности, так как мы все равно не знаем, что это значит. Тогда через a 1обозначим амплитуду вероятности попадания сквозь отверстие 1, а через a 2– амплитуду вероятности попадания сквозь отверстие 2. А для того чтобы определить амплитуду полной вероятности попадания, нужно сложить обе эти амплитуды, а сумму возвести в квадрат. Это будет точной имитацией того, что происходит с волнами, а пользоваться теми же математическими выкладками мы стали в этом случае потому, что результирующая кривая получается в нашем случае точно такой же, как и в опыте с волнами.

Теперь мне нужно проверить еще один факт: выяснить, есть ли здесь интерференция или нет. Ведь мы пока еще не говорили, что происходит, если закрыть одно из отверстий. Попытаемся проанализировать получающуюся любопытную кривую, предполагая, что электроны попадают в детектор либо через одно отверстие, либо через другое. Закроем одно из отверстий и измерим, сколько электронов попадает в различные участки последнего экрана через отверстие 1. В результате получим простую кривую N 1. Точно так же мы можем закрыть второе отверстие, измерить число электронов, попадающих в детектор через отверстие 2, и получим кривую N 2. Тем не менее, если открыть оба отверстия, мы не получим суммы N 1+ N 2так что интерференция действительно есть. Значит, в самом деле нужно при математических выкладках пользоваться этой странной формулой, согласно которой вероятность попадания равна квадрату амплитуды, которая в свою очередь представляет собой сумму двух слагаемых: N 12= ( a 1+ a 2) 2 .

Поделиться:
Популярные книги

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Охота на разведенку

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
6.76
рейтинг книги
Охота на разведенку

Неудержимый. Книга XVI

Боярский Андрей
16. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVI

Газлайтер. Том 18

Володин Григорий Григорьевич
18. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 18

Ищу жену для своего мужа

Кат Зозо
Любовные романы:
любовно-фантастические романы
6.17
рейтинг книги
Ищу жену для своего мужа

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

По воле короля

Леви Кира
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
По воле короля

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9

Последняя Арена 8

Греков Сергей
8. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 8

Измена. Вторая жена мужа

Караева Алсу
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Вторая жена мужа

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Выстрел на Большой Морской

Свечин Николай
4. Сыщик Его Величества
Детективы:
исторические детективы
полицейские детективы
8.64
рейтинг книги
Выстрел на Большой Морской

Ты - наша

Зайцева Мария
1. Наша
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Ты - наша

Повелитель механического легиона. Том III

Лисицин Евгений
3. Повелитель механического легиона
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Повелитель механического легиона. Том III