Информатика, кибернетика, интеллект
Шрифт:
Внедрение в обучение достаточно гибких и эффективных способов управления познавательной деятельностью обучаемых в последние годы идет по пути использования ЭВМ в качестве обучающей машины. Это способствует не только высокой степени адаптации к каждому обучаемому, но и обучению методам решения сложных задач. Вычислительная машина обеспечивает такое управление, при котором обучаемый от исходной ситуации может двигаться различными путями, причем одни из них неверные, а другие - верные. Возможности ЭВМ особенно ярко раскрываются в тех случаях, когда вычислительная машина является не только средством обучения, но и объектом изучения [64].
Использование вычислительных машин в качестве обучающих машин позволяет решить задачу комплексной автоматизации учебного процесса. Вместе с тем, как отмечает Л. И. Ноткин, "сам
Обучающая машина уже в силу того, что она должна быть адаптивной, необходимо приводит к идее обучающейся машины. Ее свойства описывает Ст. Бир [66] на примере обучающейся машины Паска. Последняя рассматривает ученика как "черный ящик". Она может управлять входами и измерять выходы, но не прини
172
мает во внимание характера внутренних связей ученика. Она просто манипулирует входами на основе вероятностных характеристик, которые она сама обнаруживает. Машина также есть "черный ящик". Ее входы (реакции ученика) влияют на ее выходы. Система, включающая ученика и машину, представляет собой один из видов гомеостата, так как один "черный ящик" постоянно предлагает новые состояния другому, изменяя свое поведение под влиянием реакций партнера. Вся система стремится к устойчивому состоянию, критериями которого являются быстрота и точность работы. Более того, состояние равновесия будет ультраустойчивым, ибо эта система обладает способностью находить устойчивое состояние, подстраиваясь при непредвиденных возмущениях, поступающих из окружающей среды. Наконец, система Паска, включающая обучающуюся и обучающую машины, наглядно иллюстрирует само понятие кибернетического управления. Система постепенно приходит в уравновешенное состояние, хотя к ней не прикладывают резких и радикальных воздействий, в ней не фигурируют категорические приказы и наказания. Мы наблюдаем только эволюцию - развитие к зрелости. Следовательно, отличительная особенность таких машин - способность к обучению и приспособлению к окружающей среде [67].
Решение проблемы эффективного обучения людей приводит к необходимости создания самообучающейся кибернетической системы с элементами самоорганизации. Нередко этот вопрос освещается следующим образом: "Кибернетические системы способны к обучению (с "учителем"), но элементы активности при этом остаются за "учителем", то есть человеком, а на долю устройства остается выполнение лишь алгоритмических предписаний. К самообучению и самоадаптации современные технические системы, строго говоря, не способны, не будучи самоорганизующимися системами" [68]. Такой акцент на техническую сторону проблемы не выражает, однако, сути дела.
В рамках технической кибернетики самоорганизующиеся системы включаются в более широкий класс адаптивных систем. Адаптивными называют системы, в которых способ (алгоритм) функционирования управляющего устройства автоматически изменяется целенаправленным образом для осуществления успешного или в каком-либо смысле наилучшего управления объектом. Характеристики последнего или воздействия внешней среды могут изменяться заранее непредвиденным образом. Благодаря успехам кибернетического моделирования созданы простейшие модели самоорганизующихся систем. Так, гомеостат Эшби представляет собой систему, цель деятельности которой предопределена, но поведение, при помощи которого эта цель достигается, не фиксировано. Важным этапом на пути к созданию более совершенных устройств являются самонастраивающиеся автоматы (типа автопилота). Задача последних приспосабливаться к варьированию свойств среды, изменяя свою структуру, и стремиться выйти на
173
оптимальный режим работы. Принцип самонастройки отличается от принципа самоорганизации тем, что на его основе изменяются лишь некоторые параметры алгоритма управления, в то время как самоорганизация связана с изменением структуры самого алгоритма.
Необходимо
Самообучение отличается отсутствием внешней корректировки; это обучение без поощрения или наказания. Дополнительная информация о верности реакции системе не сообщается. Адаптацией называется процесс изменения параметров и структуры системы, а возможно и управляющих воздействий на основе текущей информации с целью достижения определенного, обычно оптимального состояния системы при начальной неопределенности и изменяющихся условиях работы. Наиболее характерная черта адаптации - накопление и немедленное использование текущей информации для устранения неопределенности, вызванной недостаточной априорной информацией с целью оптимизации избранного показателя качества.
Что же касается второго условия интерпретации данных понятий - создания адекватной математической теории, то выполнить его труднее. Но такой математический аппарат (хотя и в зародышевой форме) существует. Он содержится, с одной стороны, в сформировавшейся к настоящему времени математической статистике, а с другой - в интенсивно развивающейся новой дисциплине, известной под названием математического программирования.
174
Как видим, понятие самоорганизации уточняется в терминах даптации (оптимизации), обучения и самообучения, в частности, в теории математического программирования.
Наряду с понятием самоорганизации в теории автоматов пользуются понятиями самоизменения и самосовершенствования. Важно определить их субординацию. В первом приближении понятия самоорганизации и самосовершенствования отождествляются. Основное содержание и того, и другого - самообучение. Так, В. М. Глушков пишет: "Автомат естественно называть самосовершенствующимся, или самообучающимся, если по мере удлинения истории обучения он улучшает свои ответы" [70]. Различают самосовершенствование, заранее предопределенное конструктором автомата, и самопроизвольное самосовершенствование, детерминированное фактически имевшей место историей обучения и потому не планируемое заранее. Очевидно, лишь второй тип самосовершенствования заслуживает такого названия.
Понятие самоорганизации, тем не менее, является более общим, чем понятие самосовершенствования. Это вытекает из интерпретации, предложенной У. Р. Эшби, относительно любой кибернетической (самоорганизующейся) системы [71]. Применительно к обучающимся автоматам при самосовершенствовании должно улучшаться качество ответов. При самоорганизации качество ответов может вовсе не определяться; необходимо лишь, чтобы автомат по мере обучения увеличивал в среднем их определенность. Что касается понятия самоизменения, то оно оказывается еще более широким. Автомат называют самоизменяющимся, если он меняет с течением времени ответы на задаваемые ему вопросы. Ясно, что не всякое самоизменение следует отождествлять с самоорганизацией. Опираясь на интуитивное представление о самоорганизации, естественно называть самоорганизующимся автомат, который улучшает организацию своих ответов при улучшении организации возможных его историй обучения.
Лучший из худший 3
3. Лучший из худших
Фантастика:
городское фэнтези
попаданцы
аниме
рейтинг книги
Идеальный мир для Лекаря 14
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
рейтинг книги
Неудержимый. Книга XII
12. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
рейтинг книги
Надуй щеки! Том 6
6. Чеболь за партой
Фантастика:
попаданцы
дорама
рейтинг книги
Черный дембель. Часть 2
2. Черный дембель
Фантастика:
попаданцы
альтернативная история
рейтинг книги
Истинная со скидкой для дракона
Любовные романы:
любовно-фантастические романы
рейтинг книги
В погоне за женой, или Как укротить попаданку
Фантастика:
фэнтези
рейтинг книги
Ванька-ротный
Фантастика:
альтернативная история
рейтинг книги
Новик
2. Помещик
Фантастика:
альтернативная история
рейтинг книги
Адептус Астартес: Омнибус. Том I
Warhammer 40000
Фантастика:
боевая фантастика
рейтинг книги
