Интегральная Фотоника
Шрифт:
Таким образом, конструкция Матрицы временного перемещения на базе интегрованного фотонного чипа объединяет интерферометры и модуляторы в массив элементарных ячеек для эффективной манипуляции оптическими сигналами. Она предоставляет гибкость и контроль над передачей информации в фотонных системах обработки данных.
Матрица пространственного перемещения (MSP) на базе интегрированного фотонного чипа – это устройство, которое позволяет манипулировать и переключать оптические сигналы в пространственном измерении. Оно использует массив
Конструкция MSP состоит из нескольких ключевых компонентов. В основе её работы лежит матрица активных элементов, каждый из которых представляет собой электро-оптический модулятор или другое подобное устройство. Эти элементы контролируются электрическим полем и позволяют изменять фазу или амплитуду светового луча.
На практике MSP может быть выполнена на интегральной кремниевой подложке или других материалах, таких как полупроводник или стекло. Использование интегрированных технологий позволяет создавать компактные и высокоинтегрированные устройства.
Каждый элемент матрицы имеет набор электродов для управления его поведением и координатами перемещения светового луча. Эти электроды могут быть управляемыми непосредственно или с использованием системы управления на основе программного обеспечения.
Таким образом, конструкция Матрицы пространственного перемещения на базе интегрированного фотонного чипа объединяет массив активных элементов для изменения направления оптических лучей. Она предоставляет гибкость и контроль над передачей информации в пространственном измерении, что может быть полезным для решения различных задач в фотонике и оптической коммуникации.
Принцип работы Матрицы пространственного перемещения (MSP) на базе интегрированного фотонного чипа основывается на управлении световыми лучами с помощью электро-оптического эффекта.
Каждый элемент матрицы состоит из оптического волновода и электродных структур, которые позволяют изменять параметры световой волны, такие как фаза или амплитуда. Это достигается путем применения электрического поля к элементу матрицы.
Когда на элемент MSP подается оптический сигнал, он проходит через оптический волновод и затем проходит через активный элемент – модулятор. Посредством контроля напряжения или тока на электродах модулятора меняется его рефракция, что приводит к изменению фазы или амплитуды световой волны.
Управление каждым элементом MSP может осуществляться независимо друг от друга посредством системы управления на основе программного обеспечения. Это позволяет создавать сложные шаблоны для переключения и манипулирования оптическими сигналами в пространственном измерении.
Таким образом, Матрица пространственного перемещения на базе интегрированного фотонного чипа позволяет управлять световыми лучами с помощью электро-оптического эффекта. Она предоставляет возможность изменять параметры оптических сигналов и манипулировать ими в пространственном измерении, что может быть полезно для решения различных задач в фотонике и оптической коммуникации.
Базовые элементы Фотонных
PDK
)
Набор проектирования процесса – PDK (англ. Process Design Kit) для интегральной фотоники – это набор базовых компонентов, созданных фабрикой для открытого доступа к их общему процессу производства. Эти компоненты представлены технически и геометрически в наборах проектирования процесса, и могут использоваться дизайнерами для создания различных фотонных интегральных схем.
Этот подход аналогичен таковому при производстве микроэлектронных схем и заключается в том, что PDK можно рассматривать как набор строительных блоков, где каждый компонент в библиотеке является отдельным блоком. Как и в случае с микроэлектроникой, дизайнер может использовать эти блоки для создания многих типов фотонных схем для различных приложений.
Как и в случае с микроэлектроникой, создание собственных компонентов возможно только при соблюдении правил фабрики. Эти правила включают в себя такие параметры, как стек материала, минимальное расстояние между оптическими компонентами, максимальная глубина травления и т.д.
В настоящее время производство современных оптических интегральных схем происходит на предприятиях, занимающихся производством микроэлектронных компонентов. Это связано с тем, что процесс создания фотонного чипа включает в себя использование схожих технологических процессов, которые используются в производстве микроэлектроники.
В процессе создания фотонного чипа используются такие технологические процессы, как литография, напыление металла, травление и другие. Однако, в отличие от микроэлектроники, в фотонике используются оптические материалы, такие как кремний и нитрид кремния, а также специальные технологии для создания оптических компонентов, таких как волноводы и связывающие элементы.
Разработчики фотонных чипов также используют блоки, как и в случае с разработкой кремниевых микросхем. Для этого они используют набор проектирования процесса (PDK), который предоставляется фабрикой.
PDK можно сравнить с набором строительных блоков, где каждый фотонный компонент в библиотеке является отдельным блоком. Дизайнер может использовать эти блоки для создания многих типов фотонных схем для различных приложений. Общая технология полезна для снижения затрат, когда дизайнер использует предопределенные, протестированные фотонные компоненты на выбранной им платформе.
Этот PDK содержит базовые компоненты, такие как волноводы, связывающие элементы и другие, которые могут быть использованы для создания различных фотонных интегральных схем. Разработчики могут выбирать нужные компоненты из библиотеки PDK, чтобы создавать свои фотонные устройства.
Однако, как и в случае с микроэлектроникой, создание собственных компонентов возможно только при соблюдении правил фабрики. Для этого разработчикам необходимо следовать определенным параметрам, таким как стек материала, минимальное расстояние между оптическими компонентами и другие, чтобы использовать настраиваемый компонент из определенной фабрики.