Чтение онлайн

на главную - закладки

Жанры

Интернет-журнал "Домашняя лаборатория", 2007 №2
Шрифт:

Плотность энергии электрического поля равна w = Е2/(8?k). Тогда энергию поля, сосредоточенного вблизи кольца, можно оценить как

W = интеграл wdV, где dV = (2?R)•(2?r)dr,

откуда W = kQ2ln(R/r)/(2?R).

Натяжение вдоль большой и малой образующей кольца-тора находится как изменение электростатической энергии при изменении соответствующего радиуса:

TR = — dW/d(2?R) = kQ2•(ln(R/r) — 1)/(4?2R2),

что

при R >> r дает

TR = kQ2 ln(R/r)/(4?2R2), (1)

Tr = — dW/d(2?г) = kQ2/(4?2Rr) (2)

(дополнительные 2? в знаменателе возникли потому, что на самом деле производная берется не по радиусу, а по длине окружности).

Анализируя выражения (1) и (2), можно видеть, что разрывающие силы пропорциональны квадрату заряда тора. Сила TR обратно пропорциональна квадрату радиуса большой образующей тора и слабо (логарифмически) зависит от отношения большого радиуса тора к малому. Сила Тг обратно пропорциональна как большому, так и малому радиусу тора.

Очевидно, что сила TR, стремящаяся растянуть наш тор вдоль большой окружности, меньше силы Тг, стремящейся растянуть его вдоль малой образующей (сделать бублик толще) в отношении TR/Tr = (r/R)•ln(R/r). Поскольку логарифм является медленной функцией по сравнению со степенной, то при R» r TR/Tr ~ r/R.

Силы TR и Тг направлены вдоль поверхности тора нормально к малой и к большой образующим тора соответственно. Если сравнить силы натяжения на единицу длины ?R = TR/(2?г) и ?r = Tr/(2?R), то окажется, что натяжения поверхности тора по обоим направлениям практически равны (но вдоль длинной образующей натяжение все-таки немного (логарифмически) больше).

Т.е. видно, что «тонкий» тор (пер R >> r) будет разорван электростатическими силами, когда разрывающее усилие превзойдет предел прочности сплошного тора на разрыв:

kQ2/ 4?2R2) > ??r2,

где ? — предел прочности материала тора на разрыв.

Этот критерий на разрыв кольца легко получить методом размерностей с точностью до коэффициента.

Воробьев П.В.

ВОПРОС 84:
Расскажите подробнее о дискретизации и квантовании цифрового сигнала.

ОТВЕТ: В последнее время в технике идет переход на цифровые методы обработки информации. Это связано с тем, что цифровую информацию легче хранить (появились дешевые и удобные устройства для хранения информации, такие как жесткие диски компьютеров или лазерные диски), а также с тем, что цифровую информацию легко передавать по современным линиям связи практически без потерь.

Аналоговый сигнал — это в простейшем случае число x(t), зависящее от времени t. При записи на носитель информации или воспроизведении с него сигнал неизбежно искажается различного рода шумами. Восстановить искаженный сигнал (убрать шумы) нельзя. Можно, конечно, пытаться подавлять шумы, используя некоторую дополнительную информацию (например, можно подавлять частоты, в которых сосредоточены шумы), но при этом мы теряем также и информацию о самом сигнале, т. е. опять же вносим искажения.

При оцифровке сигнала x(t) производятся две операции — дискретизация и квантование. Дискретизация — это замена сигнала x(t) с непрерывным временем t на дискретизованный сигнал — последовательность чисел x(t1) для дискретного набора моментов времени t1, t2…, ti… (чаще всего интервалы между моментами времени ?t = titi-1 берутся одинаковыми). При дискретизации, конечно, часть информации о сигнале теряется. Но если сигнал x(t) за время ?t не сильно изменяется, числа x(ti) и x(ti-1) близки друг к другу, то поведение x(t) между временами ti и ti-1 нетрудно восстановить (сигнал практически линейно изменяется во времени от x(ti-1) до x(ti). При дискретизации мы теряем частотные составляющие сигнала с частотами порядка f ~ 1/?t и выше.

При дискретизации время из аналогового как бы становится цифровым — моменты времени ti можно нумеровать, кодировать. Производится замена непрерывного времени t на нечто, которое может принимать не все значения, а только некоторые, а именно t1, t2,…, ti… Квантование сигнала — это нечто похожее, только данная процедура производится не со временем, а со значением сигнала х. Выбирается некий набор возможных значение сигнала x1, х2,…, хn… и каждому x(ti) сопоставляется ближайшее число из этого набора.

Поделиться:
Популярные книги

Кодекс Охотника. Книга VI

Винокуров Юрий
6. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VI

Чапаев и пустота

Пелевин Виктор Олегович
Проза:
современная проза
8.39
рейтинг книги
Чапаев и пустота

Имя нам Легион. Том 10

Дорничев Дмитрий
10. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 10

Ведьмак (большой сборник)

Сапковский Анджей
Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Ведьмак (большой сборник)

Девочка для Генерала. Книга первая

Кистяева Марина
1. Любовь сильных мира сего
Любовные романы:
остросюжетные любовные романы
эро литература
4.67
рейтинг книги
Девочка для Генерала. Книга первая

Вонгозеро

Вагнер Яна
1. Вонгозеро
Детективы:
триллеры
9.19
рейтинг книги
Вонгозеро

Ты - наша

Зайцева Мария
1. Наша
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Ты - наша

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Завод-3: назад в СССР

Гуров Валерий Александрович
3. Завод
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Завод-3: назад в СССР

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Квантовый воин: сознание будущего

Кехо Джон
Религия и эзотерика:
эзотерика
6.89
рейтинг книги
Квантовый воин: сознание будущего

Магия чистых душ 2

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.56
рейтинг книги
Магия чистых душ 2

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2