Чтение онлайн

на главную - закладки

Жанры

Интернет-журнал "Домашняя лаборатория", 2007 №6
Шрифт:

И право же, такой скептицизм, базирующийся на хорошей статистике и знании закона вероятности, обоснован не хуже, чем расчеты траектории космического корабля. Словом, невероятно — не факт.

ЕСЛИ ВЕРОЯТНОСТИ НЕВЕЛИКИ…

Во время войны довольно часто стреляли из винтовок по вражеским самолетам. Может показаться, что это безнадежное дело; о прицельной стрельбе здесь и речи быть не может, поскольку лишь пули, пробивающие бензобак или поражающие летчика, приносят результат.

Было установлено, что вероятность удачного выстрела равнялась 0,001. Действительно мало. Но если стреляет одновременно много бойцов, то картина меняется.

Примеров, в которых нас интересует вероятность многократно осуществленного события, обладающего малой вероятностью, множество. Например, с задачей попадания в самолет из винтовки полностью совпадает задача о выигрыше в лотерею по нескольким билетам.

Каждая серия «выстрелов» может быть как неудачной, так и закончиться одной удачей, а то и несколькими. Соответствующее распределение вероятностей было найдено французским математиком Пуассоном.

В любом математическом справочнике вы найдете формулу Пуассона, а также таблицы, позволяющие найти интересующую вас вероятность без расчета.

Средняя частота — это результат, идеально совпавший с предсказанием теории вероятностей. Если вероятность выигрыша равняется 0,01, то из ста билетов выиграет 1, а из тысячи — 10. Единица и десять это и есть средние частоты выигрыша для серий в сто и тысячу билетов. Конечно, средняя частота может быть и дробным числом. Так, для серий в десять билетов при том же значении вероятности средняя частота выигрыша равняется 0,1. Это значит, что в среднем одна из десяти серий по десяти билетов будет содержать один выигрыш.

В таблицах Пуассона приводятся цифровые данные для всевозможных значений средних частот. Чтобы было ясно, в каком виде нам сообщаются эти сведения и для общей ориентировки приведем несколько чисел характеризующих распределение вероятности при средней частоте, равной единице. Вот эти числа.

Ста выстрелами при вероятности попадания в 0,01 или тысячью выстрелами при вероятности попадания в 0,001, или миллионом при вероятности в 0,000001, мы поразим цель один раз в 37 процентах случая, 2 раза в 18 процентах, 3 раза в 6 процентах… 8 раз лишь в 0,001 процента. А промахнемся сколько раз? Промахов точно столько же, сколько одноразовых попаданий, то есть 37 процентов.

Приведенные проценты, как и любые числа вероятностей, работают точно лишь для очень большого числа серий. Если миллион людей приобрел лотерейные билеты, выигрывающие с вероятностью в 0,01, то 37 процентов из них не выиграют ни разу, а 37 процентов других лиц обязательно выиграют по одному билету и т. д. Если же мы заинтересуемся выигрышами только 100 человек, то должны считаться с вероятными отклонениями от среднего. В «среднем» 37 из них не выиграют ни разу. Отклонения здесь от «среднего» не превысят 6«sqrt(37). А с такими отклонениями, как мы уже знаем, следует считаться и помнить, что число неудачников будет находиться между 31 и 43. Конечно, не исключены и бoльшие отклонения в обе стороны, но их вероятность совсем уж невелика.

Узнав из условий розыгрыша, что в среднем на сотню лотерейных билетов один выигрывает, владелец билетов будет считать себя несчастливым, если на его 100 билетов выигрыш не упадет ни разу. Если же ему не повезет несколько раз, то он, возможно, заподозрит устроителей лотереи в несправедливости. Однако сделаем простой

расчет. Если вероятность одного «промаха» равна 0,37 (37 %), то вероятность двух «непопаданий» равна квадрату этого числа (0,14), а трех — кубу (0,05). А это не такие уж малые доли, чтобы делать столь решительные выводы.

ТЕОРИЯ РЕКЛАМЫ

Мой знакомый — американский математик мистер В., ранее занимавшийся достаточно успешно приложениями теории вероятностей к вопросам структуры жидкостей, переменил область своей деятельности.

— Я занимаюсь теорией рекламы, — сообщил он мне при последней нашей встрече.

— И это интересно?

— Бесспорно. Здесь много занятных тонкостей.

— А, собственно говоря, что же является конечной целью теории?

— Хотя бы получение ответа на вопрос, который интересует любого нашего промышленника: сколько денег имеет смысл потратить на рекламу?

— Но каковы же математические методы, которые вы используете?

— Да все те же, с которыми я имел дело до сих пор. Теория рекламы, теория популярности актера, теория известности писателя, прогноз бестселлеров литературы — все это классический предмет теории вероятностей. Не я один, а много моих коллег заняты этим приложением теории вероятностей к проблемам нашей капиталистической действительности.

— Может быть, вы расскажете мне о наиболее интересных теоретических находках в этой области?

— С удовольствием. Надеюсь, мне не надо доказывать вам, что, прежде чем добиться того, чтобы вещь, или событие, или некая персона понравились, надо, чтобы они стали известными потребителю?

— Без сомнения.

— Поэтому не будем пока касаться проблемы «нравится», а остановимся на вероятности получения неким гражданином сведений о существовании сигарет Честерфилд, лезвий для бритья фирмы Вильсон, романа Агаты Кристи «Убийство по азбуке» или киноактрисы Бетти Симпсон. Мы оставим в стороне систематические знания, приобретаемые в результате обучения в школе или университете, и будем интересоваться лишь теми сведениями, которые люди приобретают «на ходу», не преследуя образовательных целей. На каждого из нас через разные каналы: радио, газеты, телевидение, болтовню с друзьями — обрушивается мощный поток информации, получаемой «по случаю». Фамилии актеров, названия книжных новинок, новых сортов сигарет, лезвий для бритья и многое другое мы узнаем большей частью случайно. В зависимости от размаха рекламы, от интереса, который общество проявляет к тому или иному «модному» предмету, имеется некоторая определенная вероятность о нем услышать. Эта вероятность более или менее одинакова для однородной группы населения — скажем, для жителей города, имеющих телевизоры и радиоприемники и выписывающих две-три наиболее распространенные газеты.

Разумеется, равная вероятность получить информацию вовсе не означает, что по истечении какого-либо срока все люди окажутся одинаково сведущими.

Случайное получение информации очень похоже на лотерейный выигрыш.

Действительно, среди тысячи обладателей по десяти лотерейных билетов окажутся лица, которые не выиграют ни разу, которые выиграют один раз, найдутся обладатели двух счастливых билетов, будут и такие везучие игроки, у которых выигрыши выпадут на три, четыре и более билетов. Так что…

Поделиться:
Популярные книги

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Черный Маг Императора 10

Герда Александр
10. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 10

Мастер 9

Чащин Валерий
9. Мастер
Фантастика:
боевая фантастика
попаданцы
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Мастер 9

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Бастард

Майерс Александр
1. Династия
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

На границе империй. Том 8. Часть 2

INDIGO
13. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 8. Часть 2

Ваше Сиятельство 5

Моури Эрли
5. Ваше Сиятельство
Фантастика:
городское фэнтези
аниме
5.00
рейтинг книги
Ваше Сиятельство 5

Кодекс Охотника. Книга V

Винокуров Юрий
5. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.50
рейтинг книги
Кодекс Охотника. Книга V

Неудержимый. Книга XVI

Боярский Андрей
16. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVI

Тайны затерянных звезд. Том 1

Лекс Эл
1. Тайны затерянных звезд
Фантастика:
боевая фантастика
космическая фантастика
фэнтези
5.00
рейтинг книги
Тайны затерянных звезд. Том 1

Неправильный диверсант Забабашкин

Арх Максим
4. Неправильный солдат Забабашкин
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Неправильный диверсант Забабашкин

Здравствуй, 1985-й

Иванов Дмитрий
2. Девяностые
Фантастика:
альтернативная история
5.25
рейтинг книги
Здравствуй, 1985-й