Инвестирование в Уран
Шрифт:
Заключительная стадия ЯТЦ (Back-End) предполагает несколько операций: от отправки отработавшего топлива на захоронение (открытый ЯТЦ) или на завод по переработке ОЯТ (замкнутый ЯТЦ) до захоронения высокоактивных остеклованных отходов переработки.
Переработка ОЯТ и регенерация урана осуществляются на радиохимических заводах, где облученные и охлажденные твэлы освобождаются от оболочки и израсходованные топливные таблетки помещаются в ванну с азотной
Обычно в первом цикле выделения около 99 % продуктов распада деления удаляются. В дальнейшем идет обработка оставшегося вещества – очищение и разделение плутония и урана. Конечными продуктами второй стадии обычно являются UO2 и РuО2, которые могут быть повторно использованы.
Оставшиеся после регенерации урана и плутония небольшие по объему высокоактивные отходы (менее 3 % от массы урана в свежем ядерном топливе) подлежат кондиционированию – специальной обработке (цементирование, остекловывание, трансмутация) и захоронению в специализированных могильниках.
Кондиционированные высокоактивные отходы и отработавшее топливо, не подлежащее дальнейшей переработке, перевозятся в централизованное хранилище и захораниваются. Такие хранилища (могильники) являются специализированными высокотехнологичными предприятиями, на них принимаются все необходимые меры для максимально безопасного хранения в течение длительного времени (сотни и тысячи лет).
Сегодня в большинстве стран используется открытый ядерный топливный цикл (ОЯТЦ). В замкнутом цикле (ЗЯТЦ) годный для повторного использования уран, выделяемый в процессе переработки ОЯТ, составляет более 95 % от его первоначальной массы.
Стоит отметить, что, несмотря на большое количество технологических переделов и наукоемкость производств, доля топливных затрат составляет обычно около 20 % в общей структуре затрат атомной станции. Для сравнения: доля топливных затрат для угольной генерации, по данным ВЯА, составляет около 80 %, для генерации на природном газе – около 90 %.
Распределение расходов в пересчете на 1 кг типового ядерного топлива представлено в таблице 2. Как видно из таблицы, основные статьи затрат при производстве ТВС – природный уран и обогащение урана, на каждую из которых приходится от 40 до 50 % всех затрат.
В процессе обогащения урана образуется значительное количество обедненного урана (так называемые хвосты изотопного обогащения). При этом выбранное содержание 235U в хвостах (содержание в хвостах) определяет количество исходного природного урана и единиц работы разделения, необходимых для производства обогащенного уранового продукта (ОУП). Например, в таблице 3 представлены объемы природного урана и ЕРР, необходимые для производства одной ты ОУП при различных уровнях содержания в хвостах.
Как видно из таблицы, выбор уровня содержания урана в хвостах оказывает значительное влияние на спрос на рынках природного урана и услуг по обогащению. Определяющим фактором такого выбора является стоимость природного урана и ЕРР для той или иной энергокомпании-заказчика. Так, рост цены на уран может привести к выбору меньшего содержания урана в хвостах и, соответственно, большему спросу на ЕРР (в случае
Таким образом, для любых ценовых уровней на природный уран и услуги по обогащению можно вычислить оптимальное содержание в хвостах, которое позволит минимизировать стоимость производства ОУП. При этом оптимальное содержание в хвостах может значительно различаться для конкретной энергокомпании вследствие разного набора краткосрочных и долгосрочных контрактов на поставку урана и ЕРР. С точки зрения влияния на среднее содержание в хвостах для энергокомпании помимо региона поставки и производителя существенными условиями контрактов на поставку ЕРР является установление коридора выбора содержания урана в хвостах.
В период 1980–1990 гг. цены на природный уран находились на низком уровне и оптимальное содержание в хвостах превышало 0,30 %. С 2003 г., когда цены на уран стали расти, содержание в хвостах начало снижение к коридору 0,20–0,25 %, а в период пика цен летом 2007 г. оно составило около 0,13 %. Оптимальные уровни содержания в хвостах последних лет, рассчитанные Ux Consulting (UxC) на основе спотовых цен, представлены в графике 1.
Как уже отмечалось, выбор определенного уровня содержания в хвостах большинством игроков рынка может оказывать значительное влияние на спрос на уран. Так, по данным «Красной книги-2011» мировые потребности в природном уране в 2008, 2009 и 2010 гг. составили, соответственно, 59 065, 63 520 и 6 3875 тU, в то время как в период 2008–2011 гг. установленная мощность АЭС в мире увеличилась менее чем на 1 %.
Помимо производства электроэнергии на АЭС уран относительно интенсивно применяется в оборонной промышленности и производстве топлива для ядерных силовых установок военно-морского и ледокольного флотов, а также в исследовательских реакторах. Многие указанные сферы подразумевают использование высокообогащенного урана (ВОУ) с уровнем обогащения по 235U от 20 до свыше 90 %, накопленные запасы которого в силу исторических причин весьма значительны (см. разд. 2.1).
Например, исследовательские реакторы представляют собой широкий спектр реакторов коммерческого и некоммерческого назначения, основное использование которых не подразумевает производство электроэнергии. Среди направлений использования исследовательских реакторов можно выделить исследования и обучение, испытание материалов, производство радиоактивных изотопов для нужд медицины и промышленности. По данным ВЯА, в настоящее время в мире действует около 240 исследовательских реакторов в 52 странах. Однако их влияние на урановый рынок невелико: по данным МАГАТЭ, на топливо для исследовательских реакторов приходится менее 1 % уранового рынка.
Существуют и другие сферы применения природного, обогащенного или обедненного урана. Очевидно, что доля использования урана в этих областях по отношению к атомной энергетике крайне мала. Тем не менее возрастающее применение ядерных технологий и материалов на современном этапе развития подчеркивает важность развития уранового рынка. Ядерные технологии используются:
в медицине и здравоохранении (радиотерапия, визуализация, стерилизация хирургического инструментария и др.);
в агропромышленном комплексе (культиваторы, обработка продуктов питания, борьба с вредными насекомыми);