Чтение онлайн

на главную - закладки

Жанры

Искусственный интеллект на службе бизнеса
Шрифт:

Это возвращает нас к ИИ. Для экономики он имеет огромное значение именно потому, что удешевит что-то важное. Сейчас вы, вероятно, думаете об интеллекте, логических рассуждениях и мышлении вообще. А может, представляете себя среди роботов или бестелесных существ, таких как дружелюбные компьютеры из фильма «Звездный путь», которые избавят вас от необходимости думать. У Лавлейс было похожее предположение, но она быстро от него отказалась. Во всяком случае в отношении компьютеров она писала, что «у них нет никаких притязаний к созиданию. Они могут только то, что умеем мы. Они способны следовать порядку расчетов, но не обладают возможностью предвосхищать аналитические соотношения или истины» [10] .

10

Lovelace, cit. in Isaacson, W. The Innovators: How a Group of Hackers, Geniuses, and Geeks Created the Digital Revolution. NY: Simon & Schuster, 2014. P. 27.

Несмотря

на ажиотаж вокруг ИИ, «возражения леди Лавлейс», как позднее назвал их Алан Тьюринг [11] , все еще актуальны. Компьютеры пока не умеют думать, так что мысли подешевеют нескоро. Однако цена снизится на нечто настолько привычное и повсеместно используемое (как и арифметика), что никто, скорее всего, еще не догадывается, насколько удешевление повлияет на нашу жизнь и экономику.

Что же подешевеет благодаря ИИ? Ответим: прогнозы. Следовательно, согласно законам экономики, мы не только станем чаще пользоваться ими, но и начнем применять в самых неожиданных областях нашей жизни.

11

Тьюринг Алан (Alan Mathison Turing; 1912–1954) – английский математик, логик, криптограф, оказавший существенное влияние на развитие информатики. Предложил эмпирический тест Тьюринга для оценки ИИ компьютера. В честь ученого названа премия Тьюринга – самая престижная в мире награда в области информатики. Прим. ред.

Дешевизна создает преимущества

Прогнозирование (или прогностика) – это процесс заполнения информационных пробелов. Берется имеющаяся информация, называемая данными, и из нее выводится отсутствующая информация. В многочисленных обсуждениях ИИ акцентируется разнообразие прогностических методов с непонятными названиями: классификация, кластеризация, регрессия, дерево решений, байесовское оценивание, нейронные сети, топологический анализ данных, глубокое обучение, стимулированное обучение, глубокое стимулированное обучение, капсульные сети и т. д. Специалисты используют для внедрения ИИ соответствующие конкретной прогностической задаче способы.

В книге мы избавим вас от математики, лежащей в основе этих методов. Хотим лишний раз подчеркнуть, что все они касаются прогностики: использования имеющейся информации для генерации отсутствующей. Мы поможем вам определить, в каких ситуациях необходимо иметь прогноз и как получить от него максимальную выгоду.

Удешевление прогностики ведет к ее распространению. Снова элементарная экономика в действии: мы покупаем больше товаров или услуг, если цены на них падают. Например, когда в 1960-е годы зарождалась компьютерная индустрия, цена на арифметику начала быстро снижаться, и там, где она была уже востребована, к ней обращались чаще – например, в Бюро переписи населения США, Министерстве обороны США, НАСА (что отображено в фильме 2016 года «Скрытые фигуры»). Позднее новая, дешевая арифметика нашла применение в сферах, к которым прежде не имела отношения, – таких как фотография. Когда-то фотоновинки разрабатывались благодаря химии, но с удешевлением арифметики появилось и соответствующее решение – цифровые камеры. Цифровой снимок представляет собой всего лишь последовательность нулей и единиц, посредством арифметики преобразуемую в визуальное изображение.

То же касается и прогнозов. Они используются в привычных задачах: управлении ресурсами и прогнозировании спроса, – но благодаря удешевлению все чаще применяются в сферах, не относящихся к прогностике. Кэтрин Хауи из Integrate.ai призывает переформулировать любую

проблему в контексте прогностики, и современные инженеры всего мира все чаще так и поступают. Беспилотный транспорт существует в управляемой среде уже больше двадцати лет, однако функционировал он при наличии подробных планов этажей на заводах и складах. С поэтажным планом разработчики программировали своих роботов двигаться согласно логической схеме «если, то»: если перед роботом находится человек, то следует команда «стоп». Если полка пуста, то нужно двигаться к следующей. Обычные улицы оставались для роботов недоступными – в городском пространстве может случиться все что угодно – слишком много возникает условий «если, то», всего не предусмотреть.

Беспилотный транспорт не будет работать вне полностью предсказуемой и контролируемой среды до тех пор, пока инженеры не переформулируют проблему навигации в прогностическую. Они уже поняли, что вместо того, чтобы просчитывать для машины действия во всех возможных обстоятельствах, необходимо поставить одну прогностическую задачу: что сделал бы человек? И сейчас компании вкладывают миллиарды долларов в обучение машин беспилотному передвижению в неконтролируемой среде, в том числе на городских улицах и шоссе.

Представьте ИИ сидящим в автомобиле рядом с водителем. Человек проезжает миллионы километров, получает зрительную и звуковую информацию из окружающей среды, обрабатывает ее мозгом и реагирует соответственно: едет прямо или сворачивает, тормозит или разгоняется. Инженеры оснастили ИИ собственными глазами и ушами – датчиками (камерами, радарами, лазерами). Таким образом ИИ собирает поступающие к нему со всех сторон данные, пока человек управляет автомобилем, и одновременно регистрирует реакцию водителя. При совокупности конкретных данных человек поворачивает направо, тормозит или нажимает на газ. Чем дольше ИИ наблюдает за водителем, тем лучше предсказывает его действия, исходя из поступающих данных. ИИ учится водить машину, прогнозируя, как поступил бы человек в соответствующих обстоятельствах.

И вот что самое главное: когда такая важная вводная, как прогноз, дешевеет, возрастает ценность других вещей. Экономисты называют их «дополняющими факторами». Как падение цены на кофе повысило ценность сахара и сливок, так для беспилотных автомобилей падение цены прогноза повышает ценность датчиков сбора данных окружающей среды. Например, в 2015 году Intel заплатила больше $15 млрд за израильский стартап Mobileye, в первую очередь за технологию сбора данных, позволяющую транспортному средству эффективно распознавать объекты (дорожные знаки, людей и т. д.) и разметку (на улицах и дорогах).

Дешевея, прогностика станет использоваться чаще, возрастет количество дополняющих ее факторов: данные базовые экономические силы приводят в действие новые возможности, создаваемые прогностическими машинами. На элементарном уровне они снимут с человека задачи прогнозирования и таким образом снизят издержки. По мере распространения машин прогностика изменит и улучшит качество принятия решений. Но в какой-то момент прогностические машины, вероятно, станут столь точными и надежными, что изменят и деятельность организаций. Некоторые ИИ настолько заметно повлияют на деловую экономику, что перестанут использоваться только для повышения продуктивности в соответствии со стратегией; они изменят саму стратегию.

От дешевизны к стратегии

Руководители постоянно спрашивают нас: «Как ИИ повлияет на нашу стратегию бизнеса?» Проведем для ответа мысленный эксперимент. Большинство людей делали покупки на Amazon. Как и в остальных онлайн-магазинах, вы открываете сайт, находите нужные вещи, кладете их в корзину, оплачиваете и затем получаете по почте. Сейчас модель Amazon такова: «покупка – затем доставка».

Когда вы заходите на сайт, ИИ Amazon прогнозирует, что вы хотели бы купить, и предлагает соответствующие товары. Это целесообразный труд, однако его результаты далеки от идеала. В нашем случае точность прогнозов не превышает 5 %. И мы заказываем одну из множества рекомендуемых вещей. С учетом миллионного ассортимента это совсем не плохо!

Поделиться:
Популярные книги

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Чапаев и пустота

Пелевин Виктор Олегович
Проза:
современная проза
8.39
рейтинг книги
Чапаев и пустота

Младший сын князя. Том 8

Ткачев Андрей Сергеевич
8. Аналитик
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Младший сын князя. Том 8

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Боги, пиво и дурак. Том 9

Горина Юлия Николаевна
9. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 9

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Чужая семья генерала драконов

Лунёва Мария
6. Генералы драконов
Фантастика:
фэнтези
5.00
рейтинг книги
Чужая семья генерала драконов

Как притвориться идеальным мужчиной

Арсентьева Александра
Дом и Семья:
образовательная литература
5.17
рейтинг книги
Как притвориться идеальным мужчиной

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Солдат Империи

Земляной Андрей Борисович
1. Страж
Фантастика:
попаданцы
альтернативная история
6.67
рейтинг книги
Солдат Империи

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Страж Кодекса. Книга III

Романов Илья Николаевич
3. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Страж Кодекса. Книга III

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5