Искусственный интеллект – надежды и опасения
Шрифт:
Легко забыть, насколько страшным местом был мир эпохи Винера. Соединенные Штаты Америки и Советский Союз вели полномасштабную гонку вооружений, создавая водородные бомбы и ядерные боеголовки для межконтинентальных баллистических ракет, управляемых навигационными системами, которые отчасти разрабатывал сам Винер (чего он стыдился). Мне было четыре года, когда Винер умер. В 1964 году в начальной школе мы учились нырять под парты на случай ядерной атаки. Учитывая человеческое применение человеческих существ в ту эпоху, Винер, приведись ему увидеть нашу нынешнюю жизнь, в первую очередь порадовался бы тому, что мы до сих пор живы.
Глава 2
Ограничения «непрозрачных» обучаемых машин
Джуда Перл
профессор
В 1980-е годы Джуда Перл предложил новый подход к разработке искусственного интеллекта – на основании байесовских сетей. Эта вероятностная модель машинного мышления позволяла машинам функционировать – в сложном и неопределенном мире – в качестве «локомотивов доказательств», постоянно пересматривая свои убеждения в свете новых свидетельств.
Всего через несколько лет байесовские сети Перла целиком вытеснили предыдущие подходы к искусственному интеллекту, основанные на правилах. Появление методики глубинного обучения – когда компьютеры фактически самообучаются и становятся умнее, обрабатывая мириады данных, – поставило Джуду перед новым вызовом, ведь эта методика лишена прозрачности.
Признавая несомненные заслуги в области глубинного обучения таких коллег, как Майкл И. Джордан и Джеффри Хинтон [26] , Перл не готов мириться с указанной непрозрачностью. Он намеревается изучить теоретические ограничения систем глубинного обучения и утверждает, что существуют базовые препятствия, которые не позволят этим системам уподобиться человеческому интеллекту, что бы мы ни делали. Используя вычислительные преимущества байесовских сетей, Джуда осознал, что комбинация простых графических моделей и данных также может применяться для репрезентации и выведения причинно-следственных связей. Значение этого открытия намного превосходит исходный контекст исследований в сфере искусственного интеллекта. Последняя книга Перла [27] объясняет широкой публике суть каузального мышления; можно сказать, что это своего рода учебник для начинающих, которые хотят научиться мыслить, будучи людьми.
26
М. Джордан – статистик и специалист по машинному обучению, профессор Калифорнийского университета в Беркли; Дж. Хинтон – британо-канадский когнитивист, ведущий научный сотрудник проекта Google Brain, где ведутся исследования ИИ на основе методов глубинного обучения.
27
Judea Perl. Causal Inference in Statistics: A Primer (with Madelyn Glymour and Nicholas Jewell). NY, Wiley, 2016. – Примеч. автора.
Принципиально математический подход к причинности (каузальности) представляет собой значительный вклад Перла в сферу идей. Обращение к этому подходу уже принесло пользу практически во всех областях исследований, в первую очередь в сфере цифровой медицины (data-intensive health – букв. информационно емкого здравоохранения) и социальных наук.
Как бывший физик, я всегда интересовался кибернетикой. Пусть она не использовала в полной мере всю мощь машин Тьюринга, кибернетика – чрезвычайно прозрачная область знаний, возможно, потому, что она опирается на классическую теорию управления и теорию информации. Сегодня мы постепенно теряем эту прозрачность в связи с углублением процессов машинного обучения. По сути, налицо подгонка кривой, когда происходит корректировка значений в промежуточных слоях длинной цепочки ввода-вывода.
Мне встречались многие пользователи, сообщавшие, что «все работает хорошо, но мы не знаем, почему так». Стоит применить такой подход к большим наборам данных, и глубинное обучение приобретает
Кое-кто заявляет, что в прозрачности на самом деле нет необходимости. Мы не понимаем нейронную архитектуру человеческого мозга, но она исправно функционирует, а потому мы прощаем себе наше скудное понимание и охотно пользуемся таким удобным подспорьем. Точно так же, утверждают некоторые, нужно просто применять системы глубинного обучения и создавать машинный интеллект, даже если мы не понимаем, как все это работает. Что ж, до определенной степени я могу согласиться с этим доводом. Лично мне непрозрачность не нравится, поэтому я не стану тратить свое время на глубинное обучение, но я знаю, что оно занимает некое место в структуре интеллекта. Я знаю, что непрозрачные системы способны творить настоящие чудеса, и наш мозг является тому убедительным доказательством.
Но этот довод имеет свои ограничения. Причина, по которой мы прощаем себе наше скудное понимание принципов работы человеческого мозга, заключается в том, что у разных людей мозг работает одинаково, и это позволяет нам общаться с другими людьми, учиться у них, обучать их и мотивировать на нашем родном языке. Будь все наши роботы такими же непрозрачными, как AlphaGo [28] , мы не сможем вести с ними содержательные беседы, что весьма печально. Нам придется переобучать их всякий раз, когда вносятся минимальные изменения в условия задачи или в операционную среду.
28
Компьютерная программа для игры в го, разработана в 2015 г.; получила дальнейшее развитие в программах AlphaGo Master, AlphaGo Zero и AlphaZero.
Потому, оставляя в стороне эксперименты с «непрозрачными» обучаемыми машинами, я пытаюсь понять их теоретические ограничения и исследовать, каким образом эти ограничения могут быть преодолены. Я изучаю этот вопрос в контексте причинно-следственных задач, которые во многом определяют воззрения ученых на мир и в то же время изобилуют примерами проявления интуиции, вследствие чего мы можем отслеживать прогресс в ходе анализа. В данном контексте мы обнаружили, что существуют некоторые базовые препятствия, которые, если их не преодолеть, не позволят создать подлинный аналог человеческого разума, что бы мы ни делали. Полагаю, подробное описание этих препятствий не менее важно, чем попытки взять их штурмом.
Современные системы машинного обучения работают почти исключительно в статистическом режиме (или режиме модельной слепоты), который во многом аналогичен помещению функции в облако элементов данных. Подобные системы не способны размышлять по принципу «что, если?», а значит, не могут выступать основанием для «сильного» ИИ, то есть для искусственного интеллекта, который имитирует человеческие мышление и компетентность. Чтобы достичь человеческой разумности, обучаемые машины должны руководствоваться своего рода калькой с реальности, моделью наподобие дорожной карты, по которой мы ориентируемся, перемещаясь по незнакомому городу.
Точнее сказать, современные обучаемые машины улучшают свою производительность, оптимизируя параметры потока сенсорных входящих данных, получаемых из окружающей среды. Это небыстрый процесс, аналогичный естественному отбору, который движет дарвиновской эволюцией. Последняя объясняет, как такие виды, как орлы и змеи, обрели превосходное зрение за миллионы лет развития. Однако она не в состоянии объяснить сверхэволюционные процессы, которые позволили людям изобрести и начать производить очки и телескопы всего за какую-то тысячу лет. Люди обладают тем, чего лишены другие виды, а именно ментальными репрезентациями окружающей среды – репрезентациями, которыми возможно манипулировать по желанию, дабы воображать различные альтернативные и гипотетические среды в целях планирования и обучения.