Искусство правильно мыслить
Шрифт:
Рассуждение о парикмахере может быть названо псевдопарадоксом.
Другой пример такого же псевдопарадокса представляет собой известное рассуждение о каталоге.
Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылки ни самих себя. Должен ли такой каталог включать ссылку на себя?
Нетрудно показать, что идея создания такого каталога неосуществима: он просто не может существовать, поскольку должен одновременно и включать ссылку на себя, и не включать.
Интересно отметить, что составление каталога всех каталогов,
Допустим, что в какой-то момент был составлен каталог, скажем, К1, включающий все отличные от него каталоги, не содержащие ссылки на себя. С созданием К1 появился еще один каталог, не содержащий ссылки на себя. Так как задача заключается в том, чтобы составить полный каталог всех каталогов, не упоминающих себя, то очевидно, что К! не является ее решением. Он не упоминает один из таких каталогов — самого себя. Включив в К1 это упоминание о нем самом, получим каталог К2. В нем упоминается К1, но не сам К2. Добавив к К2 такое упоминание, получим К3, который опять-таки неполон из-за того, что не упоминает самого себя. И так далее без конца.
Понятно, что по такой же схеме могут быть построены и другие рассуждения, напоминающие логический парадокс, но использующие иной конкретный материал. В чем суть этой схемы и какой конкретикой можно было бы ее наполнить?
17. Допустим, что, вопреки общему убеждению, неинтересные люди все-таки есть. Соберем их мысленно вместе и выберем из них самого маленького по росту, или самого большего по весу, или какого-то другого «самого...». На этого человека интересно было бы посмотреть, так что мы напрасно включили его в число «неинтересных». Исключив его, мы опять найдем среди оставшихся «самого...» в том же самом смысле и т. д. И все это до тех пор, пока не останется только один человек, которого не с кем будет уже сравнивать. Но, оказывается, этим он как раз и интересен! В итоге мы приходим к выводу, что неинтересных людей нет. А началось рассуждение с того, что такие люди существуют.
Можно, в частности, попробовать найти среди неинтересных людей «самого неинтересного из всех неинтересных». Этим он будет, без сомнения, интересен, и его придется исключить из «неинтересных людей». Среди оставшихся опять-таки найдется наименее интересный н т. д.
В этих рассуждениях определенно есть привкус парадоксальности. Допущена ли здесь какая-нибудь ошибка, и если да, то какая?
18. Допустим, что вам дали чистый лист бумаги и поручили описать этот лист на нем же. Вы пишете: это лист прямоугольной формы, белый, таких-то размеров, изготовленный из прессованных волокон древесины и т.д.
Описание как будто закончено. Но оно явно неполное! В процессе описания объект изменился: на нем поядился текст. Поэтому к описанию нужно еще добавить: а кроме того, на этом листе бумаги написано: это лист прямоугольной формы, белый... и т. д. до бесконечности. Кажется, что здесь парадокс, не так ли? Хорошо известен детский стишок:
У попа была собака,
Он ее любил.
Она съела кусок мяса,
Он ее убил.
Убил и закопал,
А на могиле написал:
«У попа была собака...»
Смог ли этот любивший свою собаку поп когда-нибудь закончить надгробную надпись? Не напоминает ли составление этой надписи полное описание листа бумаги на нем самом?
19. Один автор дает такой «тонкий»
20. Назовем игру нормальной, если она завершается в конечное число ходов. Примерами нормальных игр могут служить шахматы, шашки, домино: эти игры всегда завершаются или победой одной из сторон, или ничьей. Игра, не являющаяся нормальной, продолжается бесконечно, не приводя ни к какому результату.
(Из этого следует, что мировые футбольные чемпионаты являются ненормальной игрой – они никогда не могут закончиться! — А.В.)
Введем также понятие сверхигра: первым ходом такой игры является установление того, какая именно игра должна играться. Если, к примеру, вы и я намереваемся играть в сверхигру и мне принадлежит первый ход, я могу сказать: «Давайте играть в шахматы». Тогда вы в ответ делаете первый ход шахматной игры, допустим, е2-е4, и мы продолжаем партию до ее завершения (в частности, в связи с истечением времени, отведенного турнирным регламентом). В качестве своего первого хода я могу предложить сыграть в крестики-нолики и т. п. Но игра, которая мною выбирается, должна быть нормальной; нельзя выбирать игру, не являющуюся нормальной.
Возникает проблема: является сама сверхигра нормальной или нет? Предположим, что это — нормальная игра. Так как первым ее ходом можно выбрать любую из нормальных игр, я могу сказать: «Давайте играть в сверхигру». После этого сверхигра началась, и следующий ход в ней ваш. Вы вправе сказать: «Давайте играть в сверхигру». Я могу повторить: «Давайте играть в сверхигру», и таким образом процесс может продолжаться бесконечно. Следовательно, сверхигра не относится к нормальным играм. Но в силу того, что сверхигра не является нормальной, своим первым ходом в сверхигре я не могу предложить сверхигру; я должен выбрать нормальную игру. Но выбор нормальной игры, имеющей конец, противоречит тому доказанному факту, что сверхигра не принадлежит к нормальным.
Итак, является сверхигра нормальной игрой или нет? Пытаясь ответить на этот вопрос, не следует, конечно, идти по легкому пути чисто словесных разграничений. Проще всего сказать, что нормальная игра — это игра, а сверхигра — всего лишь розыгрыш.
Какие другие парадоксы напоминает этот парадокс сверхигры, являющейся одновременно и нормальной, и ненормальной?
ДИСКУТИРОВАТЬ ИЛИ ПОЛЕМИЗИРОВАТЬ?
То, что называют общим именем «спор», имеет много разновидностей и вариантов. Два основных из них — дискуссия и полемика.
Дискуссия — одна из важнейших форм коммуникации, метод решения спорных проблем и своеобразный способ познания. Она позволяет лучше понять то, что не является в полной мере ясным и не нашло еще убедительного обоснования. И если даже участники дискуссии не приходят в итоге к согласию, они определенно достигают в ходе дискуссии лучшего взаимопонимания.
Польза дискуссии еще и в том, что она уменьшает момент субъективности. Убеждениям отдельного человека или группы людей она сообщает общую поддержку н тем самым определенную обоснованность.