Искусство схемотехники. Том 1 (Изд.4-е)
Шрифт:
Резистор смещения затвора может иметь очень большое сопротивление (свыше МОм), поскольку ток утечки затвора измеряется наноамперами.
Крутизна. Отсутствие тока затвора делает естественным параметром, характеризующим усиление ПТ, крутизну — отношение выходного тока к входному напряжению:
gm = iвых/uвх·
Это отличается от того, как мы рассматривали биполярные транзисторы в предыдущей главе, где мы вначале носились с идеей усиления по току (iвых/uвх), а затем ввели ориентированную на параметр крутизны модель Эберса-Молла: полезно было посмотреть на биполярные транзисторы с разных сторон, в зависимости от их применения.
Крутизна ПТ
Крутизна зависит от тока стока (вскоре мы увидим как) и определяется просто как (Напомним, что строчными латинскими буквами обозначаются малосигнальные приращения.) Из этого выражения мы получаем коэффициент усиления по напряжению:
КU = uС/uЗИ= — RСiС/uЗИ = — gmRC,
тот же результат, что и для биполярного транзистора в разд. 2.09, если заменить резистор нагрузки RK на RC. Как правило, крутизна ПТ равняется нескольким тысячам микросименс (мкСм) при токе стока в несколько миллиампер. Поскольку gm зависит от тока стока, существует некоторая нелинейность, связанная с зависимостью коэффициента усиления от изменения тока стока на протяжении периода сигнала, подобно тому, как это бывает в усилителе с заземленным эмиттером, где gm = 1/rЭ пропорциональна IС. Кроме того, ПТ в общем имеют значительно меньшую крутизну, чем биполярные транзисторы, что делает их менее подходящими для построения усилителей и повторителей. Рассмотрим это немного подробнее.
Сравнение крутизны ПТ и биполярных транзисторов. Чтобы перевести наше последнее замечание в числа, рассмотрим ПТ с p-n– переходом и биполярный транзистор, каждый с рабочим током 1 мА. Представим, что они включены как усилители с общим истоком (эмиттером), а сток (коллектор) через резистор 5 кОм подключен к источнику питания 4-10 В (рис. 3.22).
Рис. 3.22.
Не будем обращать внимания на детали смещения и сосредоточимся на рассмотрении коэффициента усиления.
Биполярный транзистор имеет rЭ, равное 25 Ом, а следовательно, gm = 40 мСм и коэффициент усиления по напряжению — 200 (что можно получить прямым расчетом как — RК/rЭ). Типичный ПТ с p-n– переходом (например, 2N4220) имеет gm порядка 2 мСм при токе стока 1 мА, давая коэффициент усиления по напряжению порядка —10. Это сравнение выглядит обескураживающим. Малая gm дает также относительно высокоеZвых в схеме повторителя (рис. 3.23): ПТ с p-n– переходом имеет Zвых = 1/gm, что в данном случае эквивалентно 500 Ом (независимо от сопротивления источника сигнала); в сравнении с этим биполярный транзистор имеет Zвых = Rс/h21Э + rЭ = Rс/h21Э + 1/gm,
Рис. 3.23. Выходное сопротивление повторителей напряжения на ПТ с p-n– переходом (а) и биполярном транзисторе (б).
Чтобы видеть, что происходит, вернемся к выражениям зависимости тока стока ПТ от напряжения затвор-исток и сравним с эквивалентным уравнением (Эберса-Молла) зависимости тока коллектора биполярного транзистора от напряжения база-эмиттер.
Биполярный транзистор (уравнение Эберса — Молла):
IК = Ic[exp(UБЭ/UT) — 1],
где UT = kT/q = 25 мВ, что дает gm = dIК/dUБЭ = IК/UT для коллекторного тока, большого в сравнении с током «утечки» Iс. Это уже знакомый нам результат — rЭ(Ом) = 25/IК(мА), поскольку gm = 1/rЭ.
Полевой транзистор: в «субпороговой» области он имеет очень малый ток стока
что, будучи экспоненциальным подобием уравнения Эберса-Молла, также дает пропорциональную зависимость крутизны от тока. Однако для наблюдающихся в реальности значений к (который зависит от геометрии ПТ, подвижности носителей и т. п.) крутизна ПТ несколько ниже, чем у биполярного транзистора, — около I/40 мВ для p– канального МОП-транзистора и около I/60 мВ для n– канального МОП-транзистора, тогда как у биполярных транзисторов она равна I/25 мВ. По мере увеличения тока ПТ входит в нормальную область «насыщения», где
IС = k(UЗИ — UТ)2,
что дает gm = 2(k·IС)1/2. Это означает, что крутизна растет пропорционально лишь корню квадратному из IС и становится намного меньше крутизны биполярного транзистора при тех же значениях рабочего тока (см. рис. 3.24).
Рис. 3.24. Сравнение gm биполярных к полевых транзисторов, 1 — биполярный транзистор; 2 — р– канальный МОП-транзистор; 3 — n– канальный МОП-транзистор.
Увеличение постоянной к в предыдущих уравнениях (за счет увеличения отношения ширины канала к его длине) увеличивает крутизну (и ток стока при данном значении Um) в надпороговой области, но все равно крутизна остается меньше, чем у биполярного транзистора при том же токе.