Исследования в консервации культурного наследия. Выпуск 2
Шрифт:
4. «Сказание о чудесах Михаила Архистратига, 8 ноября» (лл. 188–231 об.) К «Апокалипсису» относятся – 72 миниатюры, большая часть которых воспроизведена в издании «Русская Библия» (М, 1992 г., Т. 8). По мнению искусствоведа Ю. А. Неволина [1], «Апокалипсис» был включен в состав сборника позднее остальных, «Слово похвальное на зачатие Иоанна Предтечи» может датироваться периодом, охватывающим 50-е и начало 60-х гг. XVI в., «Сказание о чудесах Михаила Архистратига» (по Неволину, «Сказание о чудесах архангела Михаила») – 60-ми гг. XVI в., «Слово Иоанна Богослова на Успение Пресвятой Богородицы» – концом 60-х – началом 70-х гг. XVI в. В это время русское книгописное искусство характеризуется появле нием большого числа лицевых полностью иллюстрированных рукописей. Второе, третье и четвертое произведения сборника,
– стадия легкого карандашного рисунка;
– тщательная прорисовка пером (как правило, использовались железо-галловые чернила);
– раскраска, после которой повторялась опись.
Состояние сохранности миниатюр в сборнике различно. По степени и виду повреждений их можно разделить на четыре группы, которые практически совпадают с составными частями книги. Наиболее руинированы миниатюры второй рукописи сборника, где наблюдаются значительные провалы по зеленой краске в той или иной степени во всех двусторонних миниатюрах. Третья и четвертая части книги имеют одинаковую степень повреждения миниатюр по зеленой краске – трещины, незначительные утраты и провалы. В первой части сборника повреждений по зеленой краске практически нет, здесь при первичном осмотре можно увидеть только осыпание красочного слоя, но на просвет в некоторых местах замечено начинающееся трещинообразование.
Технико-технологическое исследование документа было начато с анализа красочного слоя миниатюр – зеленой краски, где имелись значительные утраты и повреждения. При исследовании был использован разработанный подход к анализу красочного слоя книжных миниатюр [2, 3], который включает использование следующих методов анализа: микрохимического, ИК-Фурье-микроспектроскопии, микроспектроскопии комбинационного рассеивания, элементный анализ методом ICP-MS (масс-спектроскопия с индуктивно-связанной плазмой).
Основная часть исследований выполнена методами микрохимических капельных реакций и ИК-Фурье-спектроскопии (спектрофотометр «Scimitar», совмещенный с микроскопом «UMA-400», фирма «Varian», США) в режимах отражения от поверхности и НПВО (нарушенное полное внутреннее отражение) в диапазоне частот от 4000 см–1 до 500 см–1. При анализе спектров использовалась собственная база данных на ацетат меди, а также база данных испанских исследователей [4], обработка спектров осуществлялась по прикладной программе Resolutions.
Цель работы заключалась в анализе зеленого пигмента из всех составных частей сборника в наиболее проблемных местах.
Первоначально методами микрохимического анализа, используя тест-полоски фирмы «Merck» и капельные реакции на медь с хлоридом железа (III) [5] и желтой кровяной солью К4[Fe(CN)6], было установлено, что в состав всех исследованных проб зеленых красок входит ион меди (Cu+2). Русские живописцы [6, 7] использовали ряд красок, в состав которых входила медь: атакамит, глауконит, малахит, ярь-медянка. Нельзя также исключить присутствие зеленых красок, содержащих мышьяк. Известно [7–10], что медьсодержащие краски катализируют разрушение целлюлозы, причем наиболее сильно – хлориды и ацетаты. Проведенный анализ проб тест-полосками на присутствие ионов хлора и мышьяка дал отрицательный результат. Он был подтвержден элементным анализом некоторых проб методом ICP-MS. На основании этого и анализируя состояние миниатюр и степень повреждения тех мест, откуда были взяты микропробы, было сделано предположение, что зеленой краской может являться ацетат меди, известный под названиями ярь-медянка и медянка, но нельзя было исключить и присутствие малахита, поскольку часть миниатюр находится в хорошей степени сохранности.
Дальнейшее исследование проб проводилось методом ИК-Фурье-спектроскопии. Были исследованы пробы зеленой краски со страниц 16, 31, 111, 128, 160, 167, 186 (ил. 1), представлены
В полученных спектрах проявляются как характерные для ацетатов меди полосы, так и дополнительные – 2917–2921 см–1, 2850–2851 см–1, 1650–1640 см–1 – характерные для белковых соединений, что указывает на наличие яичного (очень сильные линии 2917–2921 см–1, 2850–2851 см–1, характерные для яичного желтка) белкового связующего. Полосы отражения 1587–1584 см–1, 1440 см–1 были отнесены к нейтральному ацетату меди, 1560–1550 см–1 и полоса в районе 1410 см–1 к основному ацетату меди. В ряде спектров были зафиксированы достаточно интенсивные полосы в районе 1080 см–1 или 1000 см–1, которые нельзя было отнести ни к основному, ни к нейтральному ацетату меди, спектры которых использовались как стандарты. Было сделано предположение, что, вероятно, в нашем случае мы имеем дело со смесью ацетатов меди – отсюда и такое многообразие оттенков зелени на миниатюрах. Старые краски в процессе бытования могли видоизмениться в результате внешних воздействий: влаги, температуры, состава окружающей среды. Семейство соединений под названием «ацетаты меди», как известно, в зависимости от своего стехиометрического состава обладают разной окраской [11–12]: темно-зеленой, светло-зеленой, голубой, серо-зеленой. Естественно, что соотношение полос в спектре также будет изменяться. Если состав краски представляет собой смесь ацетатов меди, то в ИК-спектре имеет место искажение полос, наблюдается их наложение, что вызывает уширения или смещения полос.
Ил. 1. ИК-спектры зеленого пигмента, стр. 158, 128, 31, 16
На примере моногидрата ацетата меди (ч.д.а. ГОСТ 5852-79) проведено исследование изменения физико-химических свойств вещества (цвета, термических характеристик, ИК-спектров) при воздействии температуры и влаги. Исследование термических свойств образца проводилось методами дифференциально-сканирующей калориметрии (ДСК) и термогравиметрическим анализом (ТГА) на установке «ТА-2000» (Du Pont) при скорости нагрева 5 град/мин.
Исходный образец представлял собой кристаллическое вещество голубовато-зеленоватого цвета. При нагревании в интервале температур 87–160оС наблюдался эндотермический эффект 273 дж/г, сопровождаемый потерей веса в размере 8 %, что соответствует отщеплению одной молекулы Н2О. При этом происходит изменение цвета, образец стал почти черным. Однако, при рассмотрении кристаллов под микроскопом видно, что их цвет – темно-зеленый. При дальнейшем нагреве вещество начинает разлагаться, температура начала разложения 180–200оС.
Если к образцу, нагретому до 170оС и охлажденному до комнатной температуры, добавить 1 каплю воды, то цвет образца изменяется. Он приобретает зеленый цвет, подобно хвое. Термограммы ДСК и ТГА этого образца несколько отличаются от исходного образца. Мы также наблюдаем здесь один эндотермический эффект 249 дж/г с потерей веса в 8,9 %, но в более узком диапазоне температур 102–137оС.
Если к образцу, нагретому до 170оС и охлажденному до комнатной температуры, добавить избыток воды, то цвет образца становится грязно-коричневым, но по мере испарения воды он приобретает зеленый цвет разных оттенков.