Истина и красота. Всемирная история симметрии.
Шрифт:
Возвращаясь к геометрии на левом рисунке, мы видим, что выполнено то же самое утверждение. Таким образом, условие равных углов логически эквивалентно тому факту, что световой луч выбирает путь с наименьшим временем распространения из первой точки во вторую при условии, что по дороге надо отразиться от зеркала.
Связанный с этим принцип — закон преломления Снеллиуса — говорит о том, как «ломается» луч при переходе из воздуха в воду и вообще из одной среды в другую. Этот закон можно вывести подобным же образом, если учесть, что свет распространяется в воде медленнее, чем в воздухе. Гамильтон пошел еще дальше, утверждая, что тот же принцип минимизации времени применим ко всем оптическим системам, и воплотив эту мысль в едином математическом объекте — характеристической функции.
Использованная
К 1830 году Гамильтон озаботился тем, чтобы обзавестись семьей; он подумывал жениться на Элен де Вер, умом которой как он говорил Вордсворту, он восхищался. Ей он тоже писал письма в стихах и был готов уже сделать предложение, когда она заявила ему, что никогда не уедет из своей родной деревни Карра [38] . Он воспринял это как тактичный отказ — весьма вероятно, что обоснованно, поскольку через год она вышла за кого-то замуж и все же уехала.
В конце концов он женился на Элен Бейли — местной девушке, жившей неподалеку от обсерватории. Гамильтон описывал ее как «далеко не блестящую». Медовый месяц был ужасен: Гамильтон занимался оптикой, а Элен болела. В 1834 году у них родился сын Уильям Эдвин. Затем Элен уехала на большую часть года. Второй сын Арчибальд Хенри появился на свет в 1835-м, но брак уже трещал по швам.
38
Curragh, графство Килдейр (Kildare, Chill Dara). (Примеч. перев.)
В глазах потомства величайшим открытием Гамильтона была сформулированная им оптико-механическая аналогия. Но сам он до самой смерти — причем с все возрастающим упорством — отдавал пальму первенства вещи совершенного другого сорта — кватернионам.
Кватернионы представляют собой некоторую алгебраическую структуру, находящуюся в близком родстве с комплексными числами. Гамильтон был убежден, что они содержат в себе ключ к глубочайшим областям физики, а на склоне жизни убедил себя, что в них содержится ключ буквально ко всему. История, похоже, не согласилась с этой оценкой, и в течение следующего столетия кватернионы медленно тускнели, пропадая из поля общественного интереса, превратившись в тихую заводь абстрактной алгебры без серьезных применений.
Совсем недавно, однако, кватернионы пережили возрождение. И даже если они никогда не займут того положения, которое прочил им Гамильтон, их чем дальше, тем больше рассматривают как значимый источник важных математических структур. Кватернионы оказались очень специальным явлением — как раз настолько специальным, насколько этого требуют современные физические теории.
Сразу после открытия кватернионы произвели мощный переворот в алгебре. Они нарушили одно из важных алгебраических правил. На протяжении периода в двадцать лет чуть ли не все правила алгебры нарушались одно за другим, что иногда приносило богатейшие плоды, но ничуть не реже приводило в бесплодные тупики. То, что математики середины 1850-х годов воспринимали как не подлежащие изменениям правила, оказалось просто набором удобных допущений, облегчавших жизнь алгебраистам, но не всегда отвечавших более глубоким потребностям самой математики.
В этом прекрасном новом «постгалуавском» мире алгебра уже не сводилась к простому использованию в уравнениях букв вместо чисел. Алгебра имела дело с глубокой структурой уравнений — не с числами, а с процессами, преобразованиями, симметриями. Эти радикальные перемены изменили лицо математики. Она стала более абстрактной, но одновременно и более общей, и более мощной. А также приобрела зачаровывающую, порой сверхъестественную красоту.
До
Вещественное число по сути представляет собой десятичную дробь. Дело не в конкретной выбранной системе записи — которая создана просто для удобства вычислений с числами, — а в тех более глубоких свойствах, которые присущи десятичным дробям. Вещественные числа произошли от предшественников попроще, с меньшими амбициями. Сначала человечество тащилось по направлению к системе «натуральных чисел» 0, 1, 2, 3, 4 и так далее. Я сказал «тащилось», потому что на начальном этапе некоторые из этих чисел числами вовсе не считались. Было время, когда древние греки отказывались считать 2 числом; оно было слишком маленьким, чтобы демонстрировать «численность», типичную для других чисел. Числа тогда начинались с 3. В конце концов было осознано, что 2 — число в той же мере, что и 3, 4 или 5, но затем камнем преткновения оказалась единица. В самом деле, если кто-то говорит про себя, что у него имеется «некоторое число коров», а вы обнаруживаете, что у него одна-единственная корова, то не будет ли он повинен в вопиющем преувеличении? «Число», без сомнения, означало «множественность», в которой нет места единичности.
Но по мере развития систем обозначений стало кристально ясно, что единица — ровно в той же мере часть системы вычислений, что и ее старшие братья. Таким образом, единица стала числом — правда, специальным, очень маленьким. В некотором смысле оно оказалось самым важным из всех, поскольку именно там, в единице, числа начинались. Прибавлением друг к другу большого числа единиц можно получить все остальное — и в течение некоторого времени обозначения буквально выражали эту идею, например, число семь записывалось в виде семи черточек — как |||||||.
Много позднее индийские математики поняли, что есть даже более важное число, предшествующееединице. На самом деле числа начинались не там. Они начинались в нуле, который теперь изображается символом 0. Еще позднее оказалось полезным ввести в обиход отрицательные числа — числа, меньшие чемничто. Таким образом, с присоединением отрицательных, человечество изобрело систему целых чисел: …, -3, -2, -1, 0, 1, 2, 3, …. Но этим дело не закончилось [39] .
39
Читателя может заинтересовать взгляд на излагаемый здесь ход событий как на «подложную историю чисел», изложенный в книге Дж. Дербишира «Простая одержимость», которая выйдет в издательстве Corpus. (Примеч. перев.)
Проблема с целыми числами состоит в том, что они не позволяют представить целый ряд полезных величин. Фермер, продающий зерно, например, может пожелать указать количество пшеницы как нечто между 1 мешком и 2 мешками. Если это будет примерно посередине между этими двумя мерами, то желаемое количество мешков равно 1 1/ 2. Или несколько меньше — 1 1/ 4, или, наоборот, больше — 1 3/ 4. Таким образом (с использованием самых разнообразных систем для их обозначения) были изобретены дроби. Дроби интерполируют между целыми числами.