Чтение онлайн

на главную - закладки

Жанры

Истина в пределе. Анализ бесконечно малых
Шрифт:

В январе 1673 года Лейбниц впервые посещает Лондон. Свой первый визит он нанес Генри Ольденбургу, секретарю Лондонского королевского общества и своему соотечественнику, который принял его с распростертыми объятиями.

ГЕНРИ ОЛЬДЕНБУРГ (1618-1677)

Ольденбург родился в немецком городе Бремене. О его юности известно очень немногое. Примерно в 1654 году он был уполномочен властями Бремена на выполнение дипломатической миссии в Англии, где в то время правил Оливер Кромвель. С 1654 по 1661 год, когда он был избран членом Лондонского королевского общества, он с перерывами находился в Англии, Ольденбург упоминается как один из секретарей Королевского общества в двух первых

письмах короля, датированных 1662 и 1663 годом. Этот пост он занимал в течение 15 лет, вплоть до своей смерти в 1677 году. Он создал полноценную систему архивов и поддерживал переписку со многими учеными Англии и других стран, что позволило ему осуществлять важнейший обмен идеями. Именно через него проходили письма, которыми обменивались Ньютон и Лейбниц в 1676-1677 годах. Их переписка прекратилась со смертью Ольденбурга. Не забывайте, насколько сложным в те годы было поддержание подобных связей: почта в то время где-то не существовала вовсе, где-то работала крайне ненадежно, особенно при передаче писем между странами, находящимися в состоянии войны. Используя дипломатические каналы, Ольденбург создал сеть посредников, которые передавали корреспонденцию, что было особенно ценно во время войны. Подобный шаг был достаточно рискованным: в 1667 году Ольденбург провел несколько месяцев в лондонском Тауэре, возможно, из-за того, что позволил себе «недостаточно патриотичные высказывания» о британских властях в письме к иностранцу.

22 января 1673 года Лейбниц представил Лондонскому королевскому обществу деревянную модель вычислительной машины, способной выполнять сложение, вычитание, умножение и деление. Хотя модель, изготовленная в Париже, была несовершенной, именно за ее создание Лейбниц впоследствии был избран членом Королевского общества. Ольденбург сообщил ему об этом в письме, написанном в апреле того же года, однако два месяца спустя напомнил, что он обещал представить членам общества усовершенствованную модель. Свое обещание Лейбниц выполнил лишь несколько лет спустя.

Лейбниц создал машину, способную умножать числа путем многократного выполнения сложения.

Некоторое время спустя между Лейбницем и Джоном Пеллом произошел инцидент, в котором англичане встали на сторону Пелла. Лейбниц познакомился с Пеллом на встрече с Робертом Бойлем в доме его сестры на улице Пэлл-Мэлл. Как позднее вспоминал Лейбниц, он иногда посещал Бойля, так как «не пренебрегал химией». Лейбниц сообщил Пеллу, что открыл общий метод представления и интерполяции рядов с помощью разностей чисел. Пелл был удивлен: Лейбниц приехал из Парижа и должен был знать, что эти результаты уже были опубликованы во Франции и в Англии несколько лет назад Габриелем Мутоном. Лейбниц на следующий же день ознакомился с книгой Мутона в библиотеке Королевского общества и убедился, что Пелл был совершенно прав. Версия Лейбница была зафиксирована в письме к Ольденбургу от 3 февраля 1673 года, а тот в свою очередь сообщил об этом Ньютону. В итоге спустя 14 лет, когда возник спор о том, кто же первым открыл анализ бесконечно малых, Ньютон, словно желая показать склонность Лейбница к плагиату, писал: «Пелл обвинил Лейбница в том, что тот скопировал метод интерполяции из книги Мутона».

В последующие месяцы Ольденбург и Лейбниц обменялись письмами, в которых последний пожаловался на недостаток знаний математики. Как позднее вспоминал Лейбниц, в то время он совершенно не знал геометрии. Например, в апреле

1673 года Лейбниц написал Ольденбургу о результатах, касавшихся сумм чисел, обратных фигурным числам. (Ньютон позднее высмеивал эти результаты, так как они были очень простыми.) Когда Ольденбург сообщил, что эти результаты содержатся в книге Quadrature arithmeticae Пьетро Менголи, Лейбниц ошибочно возразил ему, что метод Менголи применим только для конечных, а не для бесконечных рядов. Изучив подробнее труд Менголи, Лейбниц увидел различие между своими результатами и результатами Менголи: они были получены с помощью разных методов.

Ольденбург также выслал Лейбницу результаты, которые Коллинз считал наиболее показательными для британской математики того времени. Эти результаты приводились без доказательств, иногда их было сложно понять, кроме того, при переписывании были допущены ошибки. Так как переписка часто сохранялась в архивах Лондонского королевского общества, целью этих писем

было документально зафиксировать первенство английских математиков. Ньютон подробнейшим образом изучил эти письма, чтобы подкрепить обвинения Лейбница в плагиате, хотя Ольденбург отправил Лейбницу не письма Коллинза, а их сокращенный перевод с английского на латынь. Из-за этих сокращений вкупе с ошибками, допущенными при переписывании, письма Ольденбурга было практически невозможно понять.

Лейбниц, получив эти письма, решил, что ему следует уделять больше времени и внимания математике и завершить свое образование. Именно тогда его охватила подлинная страсть к математике. Он более чем на год прервал переписку с Ольденбургом и принялся за работу. По словами Хоффмана, «он прекратил отношения с Ольденбургом, чтобы заняться самообразованием и заполнить пробелы в знаниях, которые он с болью осознавал. Их отношения возобновились лишь в конце лета 1674 года. Тогда Лейбниц был уже другим человеком и превосходно разбирался в предмете».

Лейбниц позднее писал, что обширным знаниям математики он был обязан наставничеству и примеру Гюйгенса. Следуя советам этого голландского ученого, который в то время благосклонно относился к нему, Лейбниц изучил труды Паскаля, Фабри, Грегори, Сен-Венсана, Декарта и де Слюза, а также Меркатора, книгу которого, Logarithmotechnia, он купил в Лондоне, равно как и Lectiones Барроу. Однако эти работы он изучил лишь несколько лет спустя. С книгами остальных авторов он ознакомился в королевской библиотеке, некоторые приобрел. Одной из таких книг было издание «Геометрии» Декарта под редакцией ван Схотена, которое в период жизни в Нюрнберге показалось Лейбницу слишком сложным. Особенно важным стал труд Паскаля Traite des sinus du quart de cercle, в котором рассказывалось о так называемом характеристическом треугольнике — прямоугольном треугольнике, гипотенуза которого является касательной к кривой, а катеты — дифференциалами x и у, как показано на рисунке.

Несколько лет спустя в письме к одному из своих первых учеников Якобу Бернулли Лейбниц написал, что именно эта работа Паскаля со всей ясностью показала ему, что задачи о касательных и квадратурах являются взаимно обратными. Лейбниц добавил, что у Паскаля, должно быть, была повязка на глазах — ничем иным нельзя объяснить то, что он сам не заметил этого. Лейбниц продемонстрировал племяннику Паскаля свою вычислительную машину в июне 1674 года. Паскаль также придумал вычислительную машину, которая, однако, была способна выполнять только сложение и вычитание. Лейбниц выразил сожаление, что некоторые статьи Паскаля были до сих пор не опубликованы, и попросил его племянника отправить ему несколько рукописей этого французского математика и философа.

В течение 1673 года Лейбниц с помощью характеристического треугольника совершил несколько важных открытий. В частности, он открыл метод преобразования, напоминающий современный метод интегрирования по частям. Взяв за основу этот метод, он смог найти разложение в ряд для функции арктангенса и получил свой знаменитый бесконечный ряд, с помощью которого можно вычислить число 71. В декабре 1673 года Лейбниц обсудил с Гюйгенсом возможность решения классической греческой задачи о квадратуре круга с помощью этого ряда.

Далее он занялся решением задач о касательных, взяв за основу метод де Слюза. Хоффман, подробно изучив рукописи Лейбница того периода, сделал вывод, что в своей работе Лейбниц опирался на труды вышеупомянутых авторов, к которым следует добавить Гюйгенса, и не использовал работы Ньютона и Барроу.

В письмах, отправленных во второй половине 1674-го и в начале 1675 года, Лейбниц сообщил Ольденбургу о своих результатах, полученных, по его словам, отчасти «благодаря редкой удаче». В частности, он ознакомил Ольденбурга (не приведя ни подробностей, ни формулы) с рядом для вычисления числа 71, разложением функции арксинуса в ряд, а также косвенно упомянул метод преобразования. На этот раз Ольденбург ответил ему в более критическом тоне, чем в ранний период их знакомства, так как в то время Лейбниц не скрывал своего дилетантства. Также не приводя ни подробностей, ни формул, он сообщил Лейбницу о результатах, полученных британскими математиками, в частности Ньютоном и Джеймсом Грегори: «Мне хотелось бы обратить ваше внимание на то, что теория и метод измерения кривых, которые использует уже упомянутый Джеймс Грегори, а также Исаак Ньютон, могут быть применены к любой кривой, механической или геометрической». В письме от 20 марта 1675 года Лейбниц просит подробнее рассказать об этих результатах.

Поделиться:
Популярные книги

Вмешательство извне

Свободный_человек
Фантастика:
фэнтези
боевая фантастика
5.00
рейтинг книги
Вмешательство извне

Кадры решают все

Злотников Роман Валерьевич
2. Элита элит
Фантастика:
боевая фантастика
попаданцы
альтернативная история
8.09
рейтинг книги
Кадры решают все

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание

Москва – город проклятых

Кротков Антон Павлович
1. Неоновое солнце
Фантастика:
ужасы и мистика
постапокалипсис
5.00
рейтинг книги
Москва – город проклятых

Блуждающие огни 3

Панченко Андрей Алексеевич
3. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Блуждающие огни 3

Дремлющий демон Поттера

Скука Смертная
Фантастика:
фэнтези
5.00
рейтинг книги
Дремлющий демон Поттера

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

Измена. Вторая жена мужа

Караева Алсу
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Вторая жена мужа

Барон Дубов 4

Карелин Сергей Витальевич
4. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 4

Хозяйка покинутой усадьбы

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка покинутой усадьбы

Блуждающие огни 2

Панченко Андрей Алексеевич
2. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Блуждающие огни 2

Шайтан Иван

Тен Эдуард
1. Шайтан Иван
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Шайтан Иван

Купи мне маму!

Ильина Настя
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Купи мне маму!

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8