История анимации: как рождается искусство
Шрифт:
В науке и экспериментах Леонардо достиг высокого мастерства, и во многом это повлияло на его художественные навыки. Вдохновленный исследованиями теней Аристотеля, он проделал опыты с помощью светильника и предметов разного размера. Проведя множество исследований, он вывел различные виды и подвиды теней: тени, окрашенные светом от соседних предметов, тени, отбрасываемые от нескольких источников света одновременно, тени от мягкого света на закате, тени от света, проходящего сквозь бумагу, и множество других разновидностей. Все свои наблюдения Леонардо записывал в дневники, но главный результат мы можем увидеть в его картинах, известных своим новаторством, благодаря научному подходу художника. К созданию собственных шедевров Леонардо тщательно готовился: делал огромное количество чертежей, демонстрирующих падение света на предметы различной формы, и невероятное множество заметок о видах теней. Глубокое изучение оптики, наблюдения за свойствами света и тени сыграли огромную роль в создании самого знаменитого
Леонардо да Винчи, как и все гении, добился признания далеко не в первую очередь благодаря таланту. За его достижениями в области искусства, по которым он известен большинству людей, стоит большая научная работа. Леонардо самозабвенно отдавался познанию мира науки, в частности оптики, – не меньше, чем искусству. Он строил свои исследования мира на основании знаний великих умов, проверял все на опытах и выводил новые правила с помощью экспериментов. Да Винчи считают одним из самых ярких примеров универсального человека благодаря значительным практическим результатам во многих областях знаний. Он прославился как живописец, им восхищались как скульптором, его ценили как постановщика театральных представлений и чтили как разностороннего ученого, разбирающегося в оптике, полетах, гидравлике и анатомии. В своих дневниках он оставил невероятно богатое наследие заметок и набросков с различными исследованиями и чертежами. На сегодняшний день уцелело около 7 000 страниц с его анатомическими зарисовками и чертежами, исследования по геологии, архитектуре, гидравлике, геометрии, боевым фортификациям, философии, оптике, технике рисунка. Многие идеи явно опережали свое время и получили реальное воплощение, в той или иной форме, только спустя столетия после смерти гения. Одна из них связана с постановкой театральных выступлений, также занимавших значительное место в жизни Леонардо. Игре теней и света было отведено важную роль в его сценических инновациях. Он уделял особое внимание удивительным возможностям линзы и камеры-обскура. Этот чертеж, как и многие другие, не получил материального воплощения при жизни изобретателя, но спустя несколько столетий широкие массы покорит прибор, очень напоминающий его изобретение и известный под названием «волшебный фонарь».
Волшебный фонарь
Новаторское изобретение из стекла – линза – способствовало популяризации оптики среди широких масс. В 1550 году с использованием линзы было усовершенствовано качество изображения внутри камеры-обскура. Линзы становятся основой изобретения телескопа в 1608 году и микроскопа в 1620 году. Телескоп Галилео Галилея увеличивал предмет в двадцать раз. Это позволило ученому разглядеть кратеры на Луне, хотя раньше считалось, что поверхность спутника Земли идеально гладкая.
Сам же астроном описывал наблюдения так: «Мы пришли к заключению, что поверхность Луны не гладкая, неровная и не в совершенстве сферическая, как полагал целый легион философов, – а, напротив, неровная, шероховатая, с углублениями и возвышенностями».
Телескоп позволял раскрывать тайны не только ближайшего небесного объекта, но и малоизвестных элементов Солнечной системы. Наблюдая за Юпитером, Галилео, к своему удивлению и восторгу, обнаружил, что тот является обладателем собственных Лун. Всматриваясь одним глазом в окуляр телескопа, он обнаружил не один, как у нашей планеты, а целых четыре спутника. Галилео называл их «Методическими звездами» и присвоил каждому порядковый номер. Сегодня эти спутники Юпитера известны нам под именами Ио, Европа, Ганимед и Каллисто.
Оптика и теория света, если можно так сказать, становятся суперзвездами в ученых кругах. Изучение глубины человеческого зрения и широты небесного пространства манила многие пытливые умы XVII века. Простые люди также с интересом присматриваются к удивительным изобретениям – они приобрели особую популярность в качестве развлечений для высшего и развивающегося среднего класса. К примеру, микроскоп считался игрушкой на протяжении сотни лет, прежде чем стал инструментом в руках ученых. И это создавало вполне благоприятные условия для возникновения новых оптических изобретений и открытий: с одной стороны, большой интерес научного сообщества, а с другой – любопытство непосвященных граждан. Должно было родиться что-то интересное.
Нидерландский механик, физик, математик и астроном Христиан Гюйгенс увидел новые возможности в старой доброй камере обскура. Ему удалось, так сказать, вывернуть наизнанку возможности волшебной комнаты. Изобретение Гюйгенса было значительно меньше по размеру и представляло собой вполне транспортабельную коробку с отверстием для линзы. Источник света находился внутри – в первых прототипах это была обычная свеча, заключенная в коробку. Таким образом, свет, проходя сквозь линзу, фокусировался на стене за пределами коробки. И теперь самое интересное: между линзой и источником света
Эффект оживления картинки достигался с помощью некоторых дополнительных ухищрений в конструкции Волшебного фонаря. Чтобы заставить изображение двигаться, использовали два стеклянных слайда, спроектированных вместе – один со стационарной частью изображения, а другой – с частью, которую можно было двигать вручную или с помощью простого механизма. Перемещение слайдов в основном ограничивалось двумя фазами. Эти ограничения давали возможность оживить исключительно композиции с повторяющимися движениями – например, дети, катающиеся на качелях, или вращение ветряных мельниц. Такие манипуляции можно повторять снова и снова, меняя только скорость. Разнообразить проецируемые изображения можно было и перемещением самого Волшебного фонаря. Например, на стене изображали статичную дорогу, а в фонарь помещали слайд с повозкой и, передвигая его, создавали иллюзию движения повозки по дороге. Позднее появились более сложные конструкции, а количество фаз увеличилось до трех и больше. Принцип работы Волшебного фонаря очень напоминает современный проектор. А все его технические ухищрения создавались ради того, чтобы заставить статичные изображения двигаться. Можно ли это назвать первыми технологиями анимации возрастом около 400 лет? Может быть, да, а может, и нет, – лучше пусть каждый ответит на этот вопрос для себя.
Изначально Волшебный фонарь развлекал знать. Самые ранние упоминания и иллюстрации с изображением Фонаря свидетельствуют, что его предназначением было пугать аудиторию. Люди того времени, так же, как и мы сейчас, любили пощекотать себе нервишки различными страшилками. Напугать неподготовленного зрителя с особой жестокостью можно было спрятав Фонарь ужаса в темной части комнаты. Эффект неожиданности от того, что стена вдруг превращалась в сборище чудовищ, просто сбивал с ног несчастную жертву. А учитывая, что в опыте людей еще не было ничего подобного, страшно представить, какие объяснения такому феномену приходили в голову несчастным. Эту технологию довольно быстро взяла на вооружение церковь, чтобы добавить убедительности своим описаниям жутких последствий грешной жизни. В одном из первых словарей французского языка Волшебный фонарь описывается следующим образом: «Маленькая машина, которая показывает в темноте на белой стене различных призраков и страшных чудовищ; тот, кто не знает секрета, думает, что это делается с помощью магического искусства».
К счастью, со временем нашлись и другие применения для Волшебного фонаря. Постепенно популярность устройства росла – позволить себе такую роскошь теперь могли и представители среднего класса. Начались различные эксперименты с другими возможностями для оптических иллюзий. Волшебный фонарь стали использовать в образовательной сфере – с его помощью можно было показать редкие виды растений и животных, корабли разных форм, пейзажи из дальних стран, изображения неба со звездами и кометами. При выступлении на публике такие предметы было сложно нарисовать на доске – гораздо проще использовать заранее заготовленные небольшие пластины, помещаемые в Волшебный фонарь. Они проектировались на доску перед большой аудиторией и приковывали к себе внимание зрителей. Это сильно изменило публичные выступления и лекции – смекалистые ораторы быстро почувствовали силу визуального помощника. Волшебные фонари совершенствовались на протяжении многих лет и верно служили тем, кто говорил от имени науки.
Изобретение, служившее верой и правдой научному миру, заняло свое почетное место в истории, как и изобретатель Волшебного фонаря – Христиан Гюйгенс. Среди современников он был одним из самых плодовитых ученых. На его счету значительный вклад в оптику, молекулярную физику, астрономию, геометрию, часовое дело. Открыл кольца Сатурна и Титан (спутник Сатурна). Изобрел первую практически применимую модель часов с маятником. Положил начало волновой оптике. Один из основоположников теоретической механики и теории вероятностей. Только некоторые из достижений Гюйгенса имеют отношение к анимации, но даже из такого краткого перечня можно оценить масштаб этого исследователя, сделавшего вклад в развитие оптики и оживающих изображений. Его имя не так часто оказывается на слуху у широкой публики, как имена предыдущих наших героев, но дальше мы будем говорить об ученом, чьи достижения известны каждому. И, к слову, книги, написанные Христианом Гюйгенсом, стали настольными для этого гения.