Чтение онлайн

на главную - закладки

Жанры

История инженерной деятельности
Шрифт:

В начале XIX века свой вклад в электрохимию внес М. Фарадей. Он впервые вводит понятия: электролит, электрод, электролиз, анод, катод, ион, анион, катион, которые стали научными терминами и широко используются в наши дни. По мнению Фарадея, электролиты – это вещества, которые в водном растворе распадаются на положительные и отрицательные ионы (катионы и анионы). Он считал, что такой распад возможен только под действием электрического тока.

И далее усилия многих ученых были направлены на изучение электропроводности растворов. Русский физик А. Савельев в 1853 году установил существование зависимости электропроводности растворов от температуры и

концентрации.

Немецкий физик и химик В. Гитторф всесторонне изучал движение ионов в растворах. Он доказал, что при протекании электрического тока в растворах катионы (положительные ионы) движутся к катоду, а анионы (отрицательные ионы) – к аноду. Впервые он высказал мысль, что «появление ионов не есть результат действия электрического тока». Но смелые идеи Гитторфа не были поддержаны известными учеными того времени. Г. Дэви, М. Де ла Гив, М. Фарадей продолжали считать, что ионы появляются только под действием электрического тока.

В 1857 году Р. Клаузиус предположил, что при тепловом движении между молекулами происходят столкновения, которые приводят к распаду их на ионы, которые в течение некоторого времени существуют самостоятельно. С повышением температуры увеличивается скорость движения молекул, растет число столкновений, увеличивается число столкновений, а следовательно растет электропроводность раствора. Теорию Клаузиуса ученые признали быстро, но при интерпретации экспериментальных результатов возникли затруднения. Теория не смогла объяснить, почему легче всего распадаются на ионы молекулы тех соединений, которые, как тогда считалось, состоят из элементов с наибольшим сродством друг к другу. И вскоре теория Р. Клаузиуса была забыта.

В истории электрохимической науки значительное место занимают исследования Г. Гельмгольца. Он считал, что при растворении электролитов некоторые молекулы распадаются на ионы, которые существуют в растворе независимо от того, протекает через него электрический ток или нет. Число положительных и отрицательных ионов в растворе одинаково, так что в целом он электронейтрален. Если погрузить в раствор электроды и приложить напряжение, то ионы начинают двигаться к электродам и, достигнув их, отдают свой заряд, т.е. разряжаются. Так они превращаются в электронейтральные атомы. В разных электролитах этот процесс происходит при различном напряжении между электродами. Теория Гельмгольца вплотную приблизилась к принятой позже и не потерявшей значения до сегодняшнего дня теории электролитической диссоциации Аррениуса.

Существование ионов в растворах кислот, оснований и солей независимо от протекания через раствор электрического тока научно доказал в 1884 году шведский химик Сванте Аррениус в своей докторской диссертации, в которой изложил учение об электролитической диссоциации.

Так же как Гельмгольц, Аррениус считал, что всегда в растворах часть молекул электролита диссоциирует на ионы. Этот процесс происходит при растворении, независимо от того, пропускается через раствор электрический ток или нет. Но в отличие от своего предшественника, он утверждал, что при этом в растворе устанавливается равновесие между ионами и недиссоциированными молекулами. Так впервые идея о химическом равновесии была использована для объяснения свойств растворов электролитов. С. Аррениус ввел понятие степени электролитической диссоциации, т.е. отношения числа молекул, распавшихся на ионы, к общему числу молекул электролита и разделил электролиты на сильные (у них степень электролитической диссоциации близка к 1) и слабые (у них диссоциирует

лишь незначительная часть молекул). Результаты работ Аррениуса явились основой теории электролитической диссоциации, которая носит его имя.

С. Аррениус окончательно доказал, что электрический ток в растворах электролитов переносят ионы. Подводится электрический ток к раствору с помощью металлических проводов и металлических электродов. Возникшее «противоречие» (электричество подводится к раствору в виде потока электронов, а в растворе оно представляет поток ионов) привело к важному выводу: при прохождении электрического тока через растворы электролитов на электродах должны происходить химические превращения веществ, т.е. электрическая энергия должна превращаться в энергию химического процесса.

Впервые химический процесс (разложение воды) под действием электрического тока наблюдали в 1800 году У.Никольсон и К. Карлейль. Они обратили внимание, что на катоде выделяется водород, а на аноде кислород. Объясняется это следующим образом. Положительный ион водорода подходит к отрицательному электроду (катоду), получает подведенный от источника тока электрон и превращается в атом водорода. То есть на поверхности катода происходит процесс восстановления. К аноду подходят отрицательные ионы гидроксония (ОН~) и разряжаются там, отдавая электрон, и превращается в атом кислорода. На аноде происходит процесс окисления.

Процесс восстановления или окисления на электродах компонентов электролита, сопровождаемый приобретением или потерей электронов частицами реагирующего вещества в результате электрохимических реакций, назвали электролизом.

Электролиз основательно изучал англичанин Майкл Фарадей. В 1833 году он открывает знаменитые законы электролиза, названные его именем. Фарадей установил, что электрический заряд, который должен пройти через электролит, чтобы выделить один моль вещества, не произволен. Так, например, для выделения 1 г водорода, 23 г натрия, 35,45 г хлора или 107,87 г серебра (т.е. по одному молю каждого из этих веществ) необходимо через электролит пропустить электрический заряд, равный 96500 кулонов (Кл). Для выделения одного моля магния (24,31 г), кальция (40,08 г) или цинка (65,38 г) пропущенный электрический заряд увеличивается в два раза, он равен 193000 Кл.

Результаты этих экспериментов можно легко объяснить, если учесть, что каждый атом водорода, натрия, хлора или серебра переносит через электролит один и тот же электрический заряд – е, а каждый атом магния, кальция или цинка вдвое больший – 2е.

Изучая электролиз, Н. Леблан в 1891 году установил, что каждому электролиту свойственно определенное минимальное напряжение, ниже которого процесс электролиза невозможен. Он назвал это напряжение напряжением разложения. Оказалось, что электролиз солей щелочных металлов и кислородсодержащих кислот (например, сульфата натрия) начинается при напряжении 2,2 В, электролиз самих кислот – при 1,7 В, а остальных кислот – при еще более низких напряжениях.

Электролиз можно проводить не только в растворах, но и в расплавах. Причем, некоторые металлы (например, алюминий) можно получить только электролизом расплавов.

В 1888 году в Америке в результате кропотливой работы ученых и инженеров впервые был разработан метод промышленного получения алюминия путем электролиза расплава оксида алюминия и криолита. Процесс происходит при температуре 960 градусов. На катоде выделяется алюминий. Он тяжелее расплавленного электролита и поэтому собирается на дне электролизной ванны.

Поделиться:
Популярные книги

Новый Рал 8

Северный Лис
8. Рал!
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Новый Рал 8

Идеальный мир для Лекаря 23

Сапфир Олег
23. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 23

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Крещение огнем

Сапковский Анджей
5. Ведьмак
Фантастика:
фэнтези
9.40
рейтинг книги
Крещение огнем

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Я все еще князь. Книга XXI

Дрейк Сириус
21. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще князь. Книга XXI

Адвокат империи

Карелин Сергей Витальевич
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.75
рейтинг книги
Адвокат империи

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Я все еще не князь. Книга XV

Дрейк Сириус
15. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я все еще не князь. Книга XV