Чтение онлайн

на главную - закладки

Жанры

История лазера. Научное издание
Шрифт:

Квантовая криптография использует секретный ключ для кодирования и декодирования информации, которая передается по открытым каналам, но сам ключ не передается обычным способом. Один из методов квантовой криптографии устанавливает идентичные ключи в двух разных местах без передачи какой-либо информации. Хотя это может показаться невозможным с точки зрения классической физики, это становится возможным благодаря нелокальным свойствам двухфотонного интерферометра. В другом методе, с другой стороны, ключ посылается в форме одиночных фотонов, а принцип неопределенности квантовой механики обеспечивает невозможность несанкционированного перехвата информации.

Все методы квантовой криптографии

основаны на принципе, что в квантовой механике любое измерение возмущает систему непредсказуемым образом. Объяснить в деталях, как это удивительное применение работает, не легко. Мы ограничимся представлением некоторых идей случая, в котором используется т.н. метод двухфотонной интерферометрии.

Рассмотрим рис. 67. Два человека, Алиса и Боб, находятся на большом расстоянии друг от друга, и имеют два одинаковых интерферометра, в которых используются два полностью отражающих и два частично отражающих зеркала, как показано на рис. 67. Один фотон, который приходит на один из двух интерферометров, например на левый, имеет, согласно квантовой механике, две возможности: либо прямо распространяться от S1 до S2 либо, следуя путем S1, S2, S3, S4. Если эти два пути очень отличаются друг от друга, то интерференция не происходит, и поэтому в первом случае фотон идет в направлении 24, в то время как во втором он идет в направлении 2В. То же самое происходит и для фотона, который попадает на другой интерферометр. Возможные результаты A и B обозначены, как 1A и 1B для правого интерферометра, и 2A и 2B для левого интерферометра, чтобы различать их.

Рис. 67. Метод двухфотонной интерферометрии. Два интерферометра I1 и I2 включают четыре зеркала S4, S3, S4, S3 (полностью отражаемых) и четыре зеркала S1, S2, S1, S2 (полупрозрачных). Выходы 1А и 2А представляют, например, бит 0, тогда как выходы 1В и 2B представляют бит 1

Теперь главный момент! РћРґРЅРѕР№ РёР· возможностей нелинейной оптики является получение новых цветов света, которые получаются РёР·-Р·Р° того, что РІ нелинейном материале РґРІР° фотона, имеющие некоторые частоты, С‚.Рµ. некоторые энергии, сливаются РІ РѕРґРёРЅ фотон, энергия которого является СЃСѓРјРјРѕР№ РґРІСѓС… фотонов, Рё поэтому его частота является СЃСѓРјРјРѕР№ РґРІСѓС… частот. Если РѕР±Р° фотона имеют РѕРґРЅСѓ Рё ту Р¶Рµ частоту, тогда новый фотон имеет удвоенную частоту. Рто явление известно как генерация второй гармоники. Если РґРІР° фотона имеют разные частоты, тогда РіРѕРІРѕСЂСЏС‚ Рѕ параметрическом эффекте. Также РІРѕР·РјРѕР¶РЅРѕ получить РґСЂСѓРіРѕР№, обратный, процесс, РІ котором фотон РїСЂРё нелинейном взаимодействии распадается РЅР° РґРІР° фотона, каждый РёР· которых, имеет частоту, РІ точности равной половине частоты первоначального фотона. Ртот процесс называют даун-конверсией. Законы этого процесса гарантируют, что РѕР±Р° фотона испускаются РІ РѕРґРЅРѕ Рё то Р¶Рµ время, несмотря даже РЅР° то, что квантовая механика (принцип неопределенности) РЅРµ допускает знание точного момента, РєРѕРіРґР° РѕРЅРё испускаются, так как РёС… энергии точно известны.

Теперь предположим, что источник, который испускает эти фотоны, размещается посередине между двумя наблюдателями. Процесс может проходить так, что один фотон посылается на правый интерферометр, а другой на левый. Если приемники, справа и слева, отрегулированы так, чтобы давать сигнал только тогда, когда на них поступает фотон, тогда условие, что два фотона испущены одновременно, означает, что если фотон зарегистрирован в 1A, то другой должен быть зарегистрирован в 2А, и наоборот, если он зарегистрирован в 1B, то второй должен

быть зарегистрирован в 2В. Алиса и Боб не обменивались никакими сигналами, но если Алиса зарегистрировала фотон в 1A, то она знает, что Боб также зарегистрировал фотон в 2A. Таким образом, оба наблюдателя имеют один и тот же сигнал, без обмена информацией. Если теперь фотон, зарегистрированный в A, представляет информацию бита 0, а фотон, зарегистрированный в B, представляет бит 1, то наблюдая случайную последовательность фотонов, испускаемых источником, оба наблюдателя получают одну и ту же случайную последовательность знаков 0 и 1, которая заключает в себе секретный код, которым передается и читается послание. Никакой информации не посылается между Алисой и Бобом, чтобы установить этот секретный код, поскольку выход с интерферометра не определен до тех пор, пока не сделано измерение.

На этом этапе квантовая механика требует, что если правый интерферометр измеряет фотон через 1A, то левый интерферометр должен зарегистрировать его через 1А. Если кто-нибудь захочет вставить свои фотоны в линию передачи от источника к одному из интерферометров, то очевидно, что вставленный фотон не будет зарегистрирован ни одним из интерферометров, так как отсутствует совпадение сигналов. Такой фотон просто не влияет на секретный код, установленный двумя наблюдателями.

Системы криптографии, такие, как только что описанная, или основанные на экспериментах другого вида, были экспериментально продемонстрированы и выглядят весьма обещающими.

Захват атомов

Р’ 1997 Рі. Нобелевская премия РїРѕ физике была присуждена Стивену Р§Сѓ (Рі. СЂ. 1948) РёР· Стэнфордского университета (РЎРЁРђ), Клоду Коен-Тануджи (Рі. СЂ. 1933) РёР· Коллеж РґРµ Франс Рё Рколь Нормаль Супериор (Франция) Рё Вильяму Филлипсу РёР· Национального Рнститута Стандартов Рё Технологии (РЎРЁРђ) Р·Р° разработку методов охлаждения Рё захват РІ ловушки атомов СЃ помощью лазеров. Р’ захвате атомов РІ ловушку Рё РёС… охлаждение СЃ помощью лазеров участвуют РґРІР° разных процесса, которые, однако, связаны. Поскольку ловушки для нейтральных атомов обычно обладают малой глубиной, РЅСѓР¶РЅРѕ охладить атомы РґРѕ температуры РЅРёР¶Рµ 1 Рљ, Р° СѓР¶ потом думать, как РёС… захватить РІ ловушку. Охлаждение атомного газа СЃ помощью лазеров было предложено РІ 1975 Рі. Теодором Хэншем Рё Артуром Шавловым РёР· Стенфордского университета (РЎРЁРђ). Р’ тот Р¶Рµ РіРѕРґ Дэвид Вайнланд Рё Ганс Демелт РёР· университета штата Вашингтон (Сиетл, РЎРЁРђ) предложили аналогичную схему охлаждения РёРѕРЅРѕРІ. Р—Р° работу СЃ ионами Демелт (Рі. СЂ. 1922) Рё Вольфанг Поль (19131993) РёР· Боннского университета (ФРГ) разделили Нобелевскую премию РїРѕ физике Р·Р° 1989 Рі. (Р·Р° разработку методики ловушек РёРѕРЅРѕРІ) СЃ Рќ. Рамси.

Принцип охлаждения с помощью лазера основан на передаче импульса фотона атому. Атом при поглощении фотона получает толчок в направлении, в котором летел фотон. При последующем излучении фотона, атом испытывает отдачу. Если испускание спонтанно, тогда направления испускания фотонов хаотичны. Серия поглощений и последующих излучений передает импульс атому в направление лазерного пучка, в то время как отдача усредняется до нуля. В результате атом, который двигается навстречу лазерному пучку, замедляется, подобно велосипедисту, катящемуся против ветра.

В 1960-х гг. Филлипс со своими сотрудниками использовал этот принцип для замедления пучка атомов натрия, а в 1985 г. они захватили охлажденный таким способом пучок с помощью магнитного поля.

В 1985 г. Чу со своими сотрудниками добился успеха в охлаждении атомного газа, используя шесть лазерных пучков, сформированных в пары с противоположными направлениями и при ортогональном расположении этих пар. В такой конфигурации каждый атом двигался в произвольном направлении, замедляя скорость своего движения.

Поделиться:
Популярные книги

Пипец Котенку! 2

Майерс Александр
2. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 2

Кодекс Охотника. Книга IX

Винокуров Юрий
9. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга IX

Измена. Избранная для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
3.40
рейтинг книги
Измена. Избранная для дракона

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия

Цеховик. Книга 2. Движение к цели

Ромов Дмитрий
2. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Цеховик. Книга 2. Движение к цели

Убивать чтобы жить 4

Бор Жорж
4. УЧЖ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 4

Последнее желание

Сапковский Анджей
1. Ведьмак
Фантастика:
фэнтези
9.43
рейтинг книги
Последнее желание

Босс для Несмеяны

Амурская Алёна
11. Семеро боссов корпорации SEVEN
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Босс для Несмеяны

На границе империй. Том 7. Часть 3

INDIGO
9. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.40
рейтинг книги
На границе империй. Том 7. Часть 3

Лишняя дочь

Nata Zzika
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Лишняя дочь

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Совок

Агарев Вадим
1. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
8.13
рейтинг книги
Совок

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Кодекс Охотника. Книга XVIII

Винокуров Юрий
18. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVIII