История лазера. Научное издание
Шрифт:
Рстория науки показывает, что любая область физики РїСЂРѕС…РѕРґРёС‚ фазу, РІ которой накопленный эмпирический материал обусловливает активность предварительной обработки, РІ результате которой возникают общие законы, даже если изучаемое явление РЅРµ имеет теоретической РѕСЃРЅРѕРІС‹. Примерами являются законы Кеплера небесной механики Рё закон БойляМариотта для газов.
Такие предварительные теоретические модели выполняют двойную функцию. Во-первых, они дают определенную обобщенную
Если мы с этой точки зрения рассмотрим положение, достигнутое в спектроскопии в 1880-х гг. мы увидим, что поиски законов, определяющихся спектральными линиями, были важнейшей проблемой того времени. В таких случаях ситуация приводит к результатам, что часто случается в развитии науки. Различные исследователи пытаются независимо решить одну и ту же проблему и находят одновременно одинаковые решения. Так и было в этом случае. Независимо от Ридберга, в 1890 г. два хорошо известных спектроскописта, Генрих Кайзер (18531940) и Карл Рунге (18561927), старались установить общие математические уравнения законов спектроскопии и предложили решения, которые горячо обсуждались, пока не стал превалирующим взгляд Ридберга, который и получил всеобщее признание к концу века.
Согласно Ридбергу, аналитическое выражение для спектров должно быть функцией целых чисел. Он стремился узнать, каков должен быть вид этой функции, и нашел одну, в которой обратные волновые числа зависели от обратных квадратов целых чисел. Когда Бальмер опубликовал свою формулу для атома водорода, оказалось, что она соответствует частному случаю выражения Ридберга.
С другой стороны, Кайзер и Рунге искали алгебраическое выражение, которое могло бы предсказать с высокой точностью обратные волновые числа в сериях, и нашли одно, в котором использовались обратные квадраты целых чисел и обратные четвертые степени целого числа. Хотя они и признавали, что Ридберг прав, утверждая, что их выражение просто одно из многих, которые можно выписать, они возражали, что их выражение наиболее точное. Тот факт, что Ридберг утверждал, что его соотношение имеет универсальную значимость для всех атомов, их не интересовал.
Ридберговское
В то время предполагалось, что световые колебания, представляемые линиями спектра, производятся все вместе в атоме. В конце концов, в 1907 г. Артур Вильям Конвей (18751950), профессор математической физики в Дублине, дал правильное объяснение, согласно которому атом производит спектральные линии по одной во времени, так что получение полного спектра происходит от большого числа атомов. Согласно Конвею, испускание спектральной линии атомом должно происходить в ненормальном или возмущенном состоянии. Ситуация, при которой одиночный электрон в атоме стимулируется для получения колебаний с частотой, соответствующей спектральной линии, не продолжается бесконечно, но лишь то время, которое нужно электрону, чтобы испустить цуг колебаний.
Рти идеи были заново высказаны РІ 1910 Рі. Рџ. Р’. Беваном (18751913), который также пришел Рє заключению, что спектральные явления следует объяснять участием большого числа атомов. РћРЅРё РІ определенный момент времени находятся РІ разных состояниях, Рё каждый РёР· атомов ответственен РЅРµ Р·Р° весь спектр, только Р·Р° РѕРґРЅСѓ линию РІ нем.
Комбинационный принцип, сформулированный В. Ритцем в 1908 г., был выведен из большого спектроскопического материала. Согласно ему, частоту каждой спектральной линии можно получить как разность между двумя термами т.н. спектральных термов, каждый из которых зависит от некоторого целого числа. С помощью этого принципа все линии в сериях можно было классифицировать систематическим образом.
Регулярности, открытые Бальмером в видимом спектре водорода, были обнаружены и в других областях спектра. Теодор Лайман (18741954), исследуя излучение водорода в ультрафиолетовой области, нашел в 1906 г., что серии линий, испускаемых в этой области, могут быть представлены формулой, подобной формуле Бальмера. Фридрих Пашен (1865-1947) получил в 1908 г. подобные результаты в инфракрасной области спектра. Позднее эти результаты были подтверждены и дополнены в 1922 г. американским астрономом Фрэнком П. Брэкеттом (18651953) и в 1924 г. Августом Г. Пфундом (1879-1948).