Чтение онлайн

на главную - закладки

Жанры

История математики. От счетных палочек до бессчетных вселенных
Шрифт:

Но теперь Пифагор более всего известен благодаря теореме, которая сейчас носит его имя. Как мы уже видели, в древности эта теорема была известна практически повсеместно. Считается, что Пифагор узнал о ней у представителей цивилизации, которую мы в этой связи не упоминали, — у египтян. Греческая литература постоянно ссылается на Египет как на источник знаний в области геометрии, но, к сожалению, у нас пока нет египетских документов, иллюстрирующих теорему Пифагора. Аристотель приписывает пифагорейцам первое доказательство того факта, что 2— иррациональное число. Если взять прямоугольный треугольник с основанием и высотой 1, его гипотенуза будет равна 2. На языке греческой математики пифагорейцы стремились выразить отношение гипотенузы к единице длины, то есть 2:1, как мы сейчас написали бы, то есть отношение целых чисел. В отличие от, например, пифагоровского треугольника со сторонами 3, 4, 5, где любая пара сторон составляет соотношение целых чисел, в треугольнике с катетами по единице этого достигнуть оказалось невозможно.

Имеется в виду, что гипотенуза и любой катет несоизмеримы, то есть при наличии линейки с любыми одинаковыми делениями эти две стороны треугольника не могут быть измерены точно — если в гипотенузе откладывается целое число делений, то невозможно отложить целое число делений в катете, и наоборот. Историк Диоген Лаэртский рассказывает, что это открытие было сделано Гиппасом из Метапонта (574–522 до н. э.), последователем Пифагора, и что другие члены пифагорейской школы вывезли его в море и выбросили за борт, поскольку он разрушил их веру в то, что все может быть выражено целыми числами и их отношениями.

Эту историю теперь считают сомнительной, но отношения между соизмеримыми и несоизмеримыми длинами, и соответственно между рациональными и иррациональными числами, были важным вопросом математики. Действительно, определение иррациональных чисел в терминах рациональных чисел не было достигнуто в течение более двух тысяч лет (см. Главу 19).

Самым поразительным в греческом доказательстве теоремы Пифагора был метод, который описан в конце Первой книги «Начал» Евклида. В этом самом общем геометрическом доказательстве используется последовательность построений, преобразующих два меньших квадрата в два прямоугольника, которые стыкуются, образуя больший квадрат. Оно представлено без каких-либо ссылок на числовые значения, а характерную диаграмму «мельница», сопровождающую доказательство, позднее можно было найти в трудах по математике многих евразийских культур. Прокл оставил свой комментарий: «Хотя я восхищаюсь теми, кто первым понял истинность этой теоремы, я еще больше восхищаюсь автором „Начал“». Тем не менее этой теореме было дано имя Пифагора, ведь привлекательность пифагорейского идеала математической вселенной непреходяща.

4. Начала

Греки вошли в историю как захватчики с севера, обосновавшиеся на землях, что лежали между Ионийским и Эгейским морями. Они выказали жадность к знаниям и стремление учиться у своих более древних соседей, а также — что еще важнее — желание увеличивать мудрость, полученную от египтян и жителей Месопотамии. Греческий, или эллинский, мир объединяли скорее культурные, чем расовые узы. Его историю можно разделить на два обширных периода; переход от одного к другому ознаменовался началом царствования Александра Великого. Для наших целей назовем эти периоды афинским и александрийским.

Первые Олимпийские игры проводились в 776 году до нашей эры. К этому времени греческая литература могла похвастаться произведениями Гомера и Гесиода, но о математиках, творивших ранее VI века до нашей эры, мы ничего не знаем. Титул первого греческого математика, по-видимому, следует присудить Фалесу Милетскому (640/624–548/545 до н. э.) — предполагается, что именно он привел первые описания различных геометрических теорем, ставших прообразом великой дедуктивной системы Евклида. Но наши знания о греческой математике и вообще об этом периоде основываются по большей части на исторических слухах. Мало того что сочинения того времени до нас не дошли, мы вынуждены полагаться на комментарии, сделанные спустя тысячу лет после описываемых в них событий.

В IV веке до нашей эры, после основания Академии Платона, а позже Лицея его бывшего ученика, Аристотеля, Афины стали считаться центром средиземноморского интеллектуального мира. Роль Платона в истории математики — все еще тема жарких дебатов. От него не осталось никаких собственноручно написанных формальных математических сочинений, но он оказал сильное влияние на философию математики. В своем диалоге «Республика» он утверждал, что математика должна быть одной из основных наук, изучаемых будущими правителями, а в диалоге «Тимей» мы видим своего рода преобразованное пифагорейство плюс Платоновы тела, связанные с четырьмя стихиями, и додекаэдр как символ цельной Вселенной. Влияние философии Аристотеля было для математики не особенно полезным. То, что он требовал логики, имело положительный эффект, но отказ принять бесконечность и бесконечно малые величины, а также вера в то, что совершенное движение происходит по окружности и прямым линиям, поскольку это идеальные фигуры, пользы не принесли.

Академия и Лицей были и важными центрами математического образования и исследований. Аристотель был наставником Александра Великого, управлявшего империей, которая в период расцвета простиралась аж до Северной Индии. После смерти Александра обширное государство между собой поделили его враждовавшие друг с другом генералы. Но в одном из осколков огромной империи во времена просвещенного правления Птолемея I возник научный центр — новый город, Александрия, с ее Музеем и драгоценной Библиотекой. Во второй период классической эпохи Древней Греции, известный как Золотой век греческой математики, Александрия в значительной степени затмила Афины.

Самый выдающийся труд в греческой математике — это, несомненно, «Начала»

Евклида (ок. 325–265 до н. э.). Несмотря на такую известность, о жизни математика известно очень немногое. Неясным остается даже место его рождения. Из текста более позднего комментатора Прокла Диадоха известно, что Евклид учился в Александрии во времена правления Птолемея. Когда царь спросил, как побыстрее изучить геометрию, Евклид ответил, что «не существует царского пути к геометрии». Известность «Начал» порой затмевала тот факт, что Евклид написал множество других работ, посвященных оптике, астрономии, механике и музыке. Но «Начала» стали стандартным учебником по геометрии, изучавшимся в течение многих последующих столетий. Он был настолько полным, что все предшествовавшие книги оказались избыточными, и их копий не сохранилось. Как и в случае многих других учебников, большая часть «Начал» — не оригинальная работа Евклида, но именно его мы должны благодарить за сведение результатов множества других источников и написание стройного труда, который стал общепринятой моделью логической, дедуктивной системы теорем и доказательств. «Начала» — это не краткое изложение всей греческой математики, в сочинении описаны только основы. В него не включены вычисления и многие более сложные математические задачи, такие, как конические сечения.

«Начала» состоят из 13 книг. В них охвачены вопросы планиметрии и стереометрии, теория чисел и теория непропорциональности. Книга начинается со списка, состоящего из 23 определений, например «точка — это то, что не делится на части», «линия — это длина без ширины». Затем следует пять аксиом и пять «общих понятий». У печально известного пятого постулата своя история. Фактически, каждый раздел книги открывается дальнейшими определениями, необходимыми для новых тем, которые рассматриваются в той или иной главе. Для Евклида определения были более очевидны, чем постулаты, хотя мы рассматриваем их одинаково — как аксиомы. Постулаты обычно описывают некое действие, например «от всякой точки ко всякой точке можно провести прямую», тогда как четвертое определение утверждает: «прямая линия есть та, которая ровно лежит на всех своих точках». В целом геометрия здесь сводится до методов построений с применением линейки и циркуля. Эти два простых инструмента послужили логическими генераторами целой системы. Круг и прямая считались самыми совершенными фигурами. Греки использовали и другие, так называемые «механические» методы построений, но в «Началах» они не описываются.

В книгах с первой по четвертую речь идет о построении плоскостных геометрических фигур, включая четырехугольники, треугольники, круги и многоугольники, созданные при помощи кругов. Утверждалось, что в некоторых книгах, особенно во второй, содержится намек на своего рода алгебраическую геометрию, где геометрические построения служат той же цели, что и алгебраические манипуляции. Независимо от того, верно это или нет, кажется, по крайней мере в ранних теоремах Евклид интересуется исключительно геометрическими понятиями. Термин «величина» используется для обозначения любого геометрического объекта — отрезка или фигуры, а теоремы связаны с построениями и выяснением отношений между этими величинами. В этом труде нет отсылок к числовым понятиям вроде длины; таким образом, например, квадрат рассматривается как геометрическое построение, проистекающее из отрезка. Евклид нигде не заявляет, что площадь такого квадрата есть произведение его сторон, — это определение возникнет намного позже. Таким образом, величины — самое элементарное понятие в «Началах», фундамент, на котором построена остальная часть работы. В этом контексте интересно заметить, что доказательство теоремы Пифагора выполняется путем построений, в то время как обращение к фактическим площадям, возможно, привело бы к совершенно иной форме доказательства.

В пятой книге изложена общая теория пропорций, в том виде, в каком ее первоначально изложил Евдокс. Член Академии Платона, Евдокс Книдский (ок. 408 — ок. 355 до н. э.) был одним из известнейших математиков своего времени. Ему приписывают два фундаментальных открытия: теорию отношений и метод исчерпывания. Выход из очевидного кризиса несоизмеримостей был найден в значительной степени благодаря возможности манипулировать их произведениями и отношениями посредством отношений Евдокса. Евклид фактически цитирует множество различных правил для составления отношений и условий их использования. Предпочтение отношений по сравнению с дробями давало некоторые преимущества. Теперь можно было сформулировать правило вроде: «отношение площадей кругов пропорционально отношению квадратов их диаметров» и использовать его для доказательства самых разных теорем, не применяя иррациональное число .Кроме того, отношение величин одного и того же типа не имеет размерности и может быть сопоставлено с другими отношениями, как показано в примере, приведенном выше. Таким образом, отношение стало основополагающей связью между величинами, и теория Евдокса позволила сравнивать различные отношения. В шестой книге «Начал» описаны правила работы с подобными фигурами. Там содержится обобщение теоремы Пифагора, не ограниченной квадратами сторон треугольника. Теорема была расширена таким образом, что ее можно было использовать для любой построенной фигуры. Таким образом, если мы строим полукруги, диаметры которых равны катетам треугольника, тогда сумма площадей двух меньших полукругов равна площади большего.

Поделиться:
Популярные книги

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Вернуть невесту. Ловушка для попаданки

Ардова Алиса
1. Вернуть невесту
Любовные романы:
любовно-фантастические романы
8.49
рейтинг книги
Вернуть невесту. Ловушка для попаданки

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи

Попаданка в академии драконов 2

Свадьбина Любовь
2. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
6.95
рейтинг книги
Попаданка в академии драконов 2

Зеркало силы

Кас Маркус
3. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Зеркало силы

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Кодекс Охотника. Книга XVII

Винокуров Юрий
17. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XVII

Ох уж этот Мин Джин Хо – 3

Кронос Александр
3. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо – 3

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Адвокат

Константинов Андрей Дмитриевич
1. Бандитский Петербург
Детективы:
боевики
8.00
рейтинг книги
Адвокат