Чтение онлайн

на главную - закладки

Жанры

История всего. 14 миллиардов лет космической эволюции. 3-е международное издание
Шрифт:

Вселенная продолжает расширяться, а значит, ее фотоны все еще теряют энергию. Сегодня, куда бы астрофизики ни кинули взгляд, они обнаруживают космические следы микроволновых фотонов с температурой 2,73 градуса по шкале Кельвина, оставшиеся после тысячекратной потери фотонами энергии с тех пор, как в мире сформировался самый первый атом. Траектории движения фотонов в небе – то конкретное количество энергии, поступающей из самых разных направлений, – содержат в себе следы распространения вещества во Вселенной тех самых времен, когда атомы еще не начали формироваться. По этим траекториям астрофизики могут судить о многих вещах, включая предполагаемые возраст и форму Вселенной. Несмотря на то что сегодня атомы являются неотъемлемой составляющей существования Вселенной, уравнение Эйнштейна отнюдь не следует сбрасывать со

счетов. Оно актуально для ускорителей частиц, в которых каждая пара вещества и антивещества создается из энергетических полей; для ядра Солнца, где 4,4 миллиона тонн вещества ежесекундно превращаются в энергию; для ядер всех остальных звезд.

Формула E = mc2 умудряется напомнить о себе даже вблизи черных дыр, буквально сразу за их горизонтом событий: здесь пары частиц и их античастиц рождаются за счет феноменальной гравитационной энергии черной дыры. Британский космолог Стивен Хокинг впервые описал подобные выходки в 1975 году, показав, что вся масса черной дыры целиком может медленно испаряться благодаря данному механизму. Другими словами, черные дыры оказались не совсем черными. Это явление называют излучением Хокинга, и оно служит напоминанием о том, сколь плодотворно самое знаменитое уравнение Эйнштейна.

Но что же произошло до всей этой вселенской суматохи? Что произошло до того, как все началось?

Астрофизики не имеют ни малейшего понятия. Точнее говоря, наши самые творческие идеи ничем или почти ничем не обоснованы в рамках экспериментальной науки. При этом верующие люди любят утверждать, причем нередко с легким оттенком самодовольства, что все же что-то конкретное должно было все это «начать», некая сила, превосходящая все остальные силы, исток у истоков мира. Некая первопричина. В голове такого человека это самое «что-то», конечно же, Бог, природа которого может различаться в глазах разных верующих, но который всегда оказывается в ответе за то, что «все началось».

Но что, если Вселенная была всегда? В таком состоянии или при таких условиях, которые нам еще предстоит понять и описать, например в виде Мультивселенной, где все, что мы называем своей Вселенной, – лишь крошечный пузырек в пене океанического прибоя? А может, Вселенная «начала существовать» подобно частицам, просто появившись совершенно из ниоткуда и вообще без причины?

Подобные отповеди обычно никого не убеждают. Тем не менее они напоминают нам о том, что осведомленное невежество – это естественное состояние ума ученых-исследователей, которые стоят во главе движения за улучшение качества и количества знаний, доступных человеку. Люди, которые считают себя всезнающими, никогда не пытались обнаружить да и никогда не забредали случайно за границу знаний о космосе между известным нам и неизвестным. «Вселенная была всегда» – такой ответ не вызовет уважения в ответ на вопрос о том, «что же было до начала всех начал». При этом для верующих людей ответ «Господь был всегда» является очевидным и очень приятным ответом на вопрос «Что было до того, как появился Господь?»

Кем бы вы ни были, пускаясь навстречу открытиям, раскрывающим тайну о том, где и как все когда-то начиналось, вы почувствуете мощный эмоциональный подъем, как если бы знание о происхождении человечества каким-то образом делало вас более приспособленным к тому, чему еще предстоит случиться в будущем. Жизнь и Вселенная преподают нам один и тот же урок: знать, откуда ты пришел, не менее важно, чем знать, куда ты направляешься.

Глава 2. О важности антивещества

Физике элементарных частиц принадлежит пальма первенства за самый необычный и одновременно с этим игривый профессиональный жаргон среди всех физических дисциплин. В предыдущей главе мы познакомились не только с протонами, нейтронами и электронами, но также с фотонами, адронами, бозонами и кварками. Но этого недостаточно, чтобы почувствовать всю глубину бездны, в которой существуют названия, имеющие отношение к физике элементарных частиц. Где еще вы найдете отрицательный мюон и мюонное нейтрино, обменивающиеся нейтральным векторным бозоном? Или станете свидетелем глюонного обмена, благодаря которому соединяются странный и очарованный кварки? Где еще вам удалось бы встретить гравитино,

фотино и скварки? А ведь помимо этих, казалось бы, бесчисленных частиц со странными названиями, физикам приходится также иметь дело с параллельной Вселенной из их античастиц, которые образуют собой антивещество. Несмотря на то что вы встречаетесь с антивеществом преимущественно в научной фантастике, оно существует на самом деле. Вы, наверное, уже догадываетесь, что оно склонно аннигилировать при контакте с обычным веществом?

Между частицами и античастицами в нашей Вселенной уже давно развивается нежный роман. Они могут вместе родиться из чистой энергии и аннигилировать, обращая свою обретенную при рождении массу обратно в энергию. Антиматерия может возникнуть из ничего или, точнее, из тонкого пространства. Гамма-фотоны с достаточно высокой энергией могут трансформироваться в пары «электрон – позитрон», преобразуя тем самым свою огромную энергию в небольшое количество материи, энергетический баланс которой удовлетворяет формуле E = mc2. Энергия, заключенная в паре «электрон – позитрон», эквивалентна энергии движения фотона гамма-излучения.

В 1932 году американский физик Карл Дэвид Андерсон открыл позитрон – положительно заряженную частицу антивещества, аналог отрицательно заряженного электрона. С той поры физики, занимающиеся элементарными частицами, регулярно изготавливают самые разные античастицы в ускорителях частиц по всему миру, но лишь совсем недавно им удалось собрать античастицы в полноценные атомы. С 1996 года международная группа ученых под руководством Вальтера Улерта при Институте ядерной физики исследовательского центра в немецком городе Юлихе создает атомы антиводорода, в которых антиэлектрон благосклонно вращается вокруг антипротона. Чтобы сделать несколько первых подобных антиатомов, физики воспользовались огромным ускорителем частиц, принадлежащим Европейской организации ядерных исследований (гораздо более широко известной как ЦЕРН [5] ), расположенной в Женеве, Швейцария. Благодаря ему свершилось множество важных открытий и событий в области мировой физики элементарных частиц.

5

CERN – аббревиатура Conseil Europeen pour la Recherche Nucleaire, французского названия Европейской организации ядерных исследований.

Физики применяют довольно простую методику для создания антиатомов: сначала они изготавливают антиэлектроны и антипротоны, потом подталкивают их друг к другу при подходящей для этого температуре, а затем ждут, пока они не соединятся в атомы (то есть антиатомы). Во время первого раунда экспериментов команда Улерта смогла создать девять атомов антиводорода. Но в мире, в котором преобладает вещество, атому антивещества живется довольно туго. Эти атомы антиводорода просуществовали менее 40 наносекунд (40 миллиардных долей секунды), прежде чем аннигилировали один за другим вместе с атомами обычного вещества.

Открытие антиэлектрона стало одним из величайших триумфов теоретической физики, ведь его существование было предсказано родившимся в Великобритании физиком Полем Андриеном Морисом Дираком буквально за несколько лет до этого. Чтобы описать вещество на уровне атомных и субатомных частиц, в 1920-е годы физики разработали новую отрасль науки, которая занималась бы разъяснением результатов их экспериментов с этими частицами. Используя новый установленный свод правил, сегодня известный как квантовая теория, Дирак вывел из второго решения своего уравнения постулат о том, что некий электрон-призрак с «другой стороны» Вселенной может иногда залетать в наш мир в качестве обычного электрона, оставляя за собой пробел – недоимку – в море отрицательной энергии. Дирак надеялся, что это поможет ему лучше понять и описать природу протонов, но другие физики предположили, что подобный энергетический пробел, или «дырка», заявит о себе как антиэлектрон с положительным зарядом. В итоге его назвали позитроном, что отражает приписанный ему положительный электрический заряд. Обнаружение реально существующих позитронов подтвердило базовые предположения Дирака и окончательно возвело антивещество в ранг явлений, достойных не меньшего внимания, чем обычное вещество.

Поделиться:
Популярные книги

Как я строил магическую империю 3

Зубов Константин
3. Как я строил магическую империю
Фантастика:
попаданцы
постапокалипсис
аниме
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 3

Ритуал для призыва профессора

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Ритуал для призыва профессора

Невеста снежного демона

Ардова Алиса
Зимний бал в академии
Фантастика:
фэнтези
6.80
рейтинг книги
Невеста снежного демона

Прорвемся, опера! Книга 3

Киров Никита
3. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 3

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!

Матабар

Клеванский Кирилл Сергеевич
1. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар

Офицер Красной Армии

Поселягин Владимир Геннадьевич
2. Командир Красной Армии
Фантастика:
попаданцы
8.51
рейтинг книги
Офицер Красной Армии

Волхв пятого разряда

Дроздов Анатолий Федорович
2. Ледащий
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Волхв пятого разряда

Вамп

Парсиев Дмитрий
3. История одного эволюционера
Фантастика:
рпг
городское фэнтези
постапокалипсис
5.00
рейтинг книги
Вамп

Младший сын князя. Том 3

Ткачев Андрей Юрьевич
3. Аналитик
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Младший сын князя. Том 3

Шахта Шепчущих Глубин, Том II

Астахов Евгений Евгеньевич
3. Виашерон
Фантастика:
фэнтези
7.19
рейтинг книги
Шахта Шепчущих Глубин, Том II

Наследник пепла. Книга I

Дубов Дмитрий
1. Пламя и месть
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Наследник пепла. Книга I

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9