Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Звезды формируются не из всех газовых облаков. Довольно часто газовое облако оказывается в ситуации, когда не понимает, что ему дальше делать. Точнее, это астрофизики не понимают, что им делать. Мы знаем, что межзвездное облако «хочет» коллапсировать под воздействием своей собственной гравитации, чтобы образовать из своего материала одну звезду или более. Но его вращение, как и влияние турбулентного движения газа внутри самого облака, мешает ему достигнуть этой цели. Кстати, давление газа, о котором всем вам должны были рассказывать в старших классах школы, тоже препятствует коллапсу. Да и магнитные поля ему совсем не способствуют: они проникают в облако и ограничивают динамику любых свободно передвигающихся внутри него заряженных частиц, препятствуя сжатию, а значит, чиня помехи попыткам самого облака среагировать на свою собственную гравитацию. Самый страшный вывод, который можно сделать из этого последовательного мышления, заключается в следующем: если бы никто

заранее не знал, что звезды на самом деле существуют, даже самые передовые исследования предоставили бы нам достаточно убедительных причин того, что звезды никогда не могли бы сформироваться в принципе.

Как и несколько миллиардов звезд в нашей галактике Млечный Путь, получившей свое название в честь той широкой полосы света, что тянется через весь небесный свод и представляет собой наиболее густонаселенные звездами регионы, гигантские газовые облака тоже вращаются вокруг центра нашей галактики. Звезды — это песчинки размером всего лишь в несколько световых секунд в диаметре, парящие в огромном океане почти пустого пространства и изредка проплывающие одна мимо другой, словно корабли в открытом море. Напротив, газовые облака — огромны. Как правило, они достигают в размере нескольких сотен световых лет, а масса каждого из них — массы миллиона Солнц.

Неуклюже передвигаясь по всей галактике, эти гигантские облака нередко сталкиваются, цепляясь своими газовыми и пылевыми внутренностями друг за друга. Иногда в зависимости от их относительных скоростей и углов столкновения облака так и остаются вместе, становясь одним целым и еще более гигантским облаком, в других случаях, нанося друг другу ощутимые повреждения при столкновении, они, наоборот, разрывают друг друга на части.

Если температура облака упадет до достаточно низкого уровня (не более 100 градусов выше абсолютного нуля), составляющие его атомы при столкновении будут прикрепляться друг к другу, в отличие от того, как они отскакивают друг от друга в разные стороны при более высоких температурах. Этот химический переход влечет за собой всеобъемлющие последствия. Растущие в объеме частицы, которые теперь насчитывают десятки атомов каждая, начинают рассеивать видимый свет во все стороны, сильно ослабляя свет звезд, расположенных за таким облаком. К тому времени как эти частицы станут полноценными твердыми частицами космической пыли (этакими «зернышками»), в них будут уже миллиарды атомов. Стареющие звезды производят подобные твердые частицы и ненавязчиво отправляют их в межзвездное пространство в то время, когда сами находятся в стадии красного гиганта своего жизненного цикла. В отличие от меньших частиц такие твердые частицы космической пыли, состоящие из миллиардов атомов, больше не рассеивают фотоны видимого света, источником которых являются звезды, расположенные за облаком. Вместо этого они поглощают эти фотоны и затем снова излучают их энергию «как свою» — в виде инфракрасного излучения, которое легко покидает облако космической пыли. В то время как это происходит, давление фотонов, передаваемое поглощающим их молекулам, толкает облако в направлении, противоположном направлению источника света. И вот наше облако уже практически есть звездный свет!

Звезды рождаются тогда, когда силы, делающие облако все более плотным, в конце концов приводят к его коллапсу под воздействием собственной гравитации: в это время каждый участок облака старается притянуть все остальные его участки как можно ближе к себе. Так как горячий газ противостоит сжатию и коллапсу более эффективно, чем охлажденный, мы оказываемся в неоднозначной ситуации. Нам нужно охладить облако, прежде чем оно сможет обратно разогреться само в процессе формирования звезды. Другими словами, создания звезды, ядро которой разогревается до 10 миллионов градусов (этого как раз хватает для запуска процесса термоядерного синтеза), необходимо сначала охладить облако до минимально достижимой в его внутренних условиях температуры. Только при экстремально низких температурах всего в несколько десятков градусов выше абсолютного нуля наше облако сможет коллапсировать и запустить процесс звездообразования.

Что же такого происходит внутри облака, чтобы от коллапса оно могло вдруг перейти к выковыванию новой звезды? Астрофизики здесь могут только разводить руками. Как бы им ни хотелось отследить динамику событий, происходящих внутри огромного межзвездного облака в этот период, создать компьютерную модель, которая учла бы все известные законы физики, все внешние и внутренние воздействия на такое облако и все актуальные химические реакции, которые могут в это время протекать внутри него, — это пока за пределами наших возможностей. Следующая непростая загадка: почему первоначальное облако, из которого мы пытаемся получить звезду, обладает размером, в миллиарды раз большим, чем ее конечный размер, а плотность такой звезды затем составит в 100 секстиллионов раз больше средней плотности облака-родителя? В таких ситуациях то, что имеет наибольшую важность в контексте одной шкалы размеров, может оказаться не заслуживающим интереса в контексте другой шкалы.

Тем

не менее, полагаясь на уже увиденное нами в космосе, мы можем с уверенностью заявить, что в центре межзвездного облака, в его самых голубого, темных и плотных регионах, где температура предположительно падает примерно до уровня 10 градусов выше абсолютного нуля, гравитация способна провоцировать коллапс отдельных объемов газа (так называемых газовых карманов), с легкостью преодолевая сопротивление магнитных полей и другие помехи. Это сжатие, в свою очередь, преобразует гравитационную энергию таких газовых карманов в тепловую. Температура каждого из таких участков облака, которым вскоре предстоит сформировать собой ядро новорожденной звезды, стремительно возрастает во время коллапса, не давая твердым частицам космической пыли в своем непосредственном окружении соединяться при столкновении и раскидывая их в стороны. В какой-то момент температура в центре коллапсирующего газового кармана достигает критической отметки в 10 миллионов градусов по абсолютной шкале.

При этой волшебной температуре некоторые протоны (представляющие собой, по сути, обнаженные атомы водорода, лишенные своего электрона) движутся достаточно быстро, чтобы преодолеть свое взаимное отторжение. Их высокая скорость позволяет им в какой-то момент оказаться достаточно близко друг к другу, чтобы под влиянием сильного ядерного взаимодействия соединиться. Это взаимодействие, работающее только на исключительно малых расстояниях, удерживает протоны и нейтроны вместе во всех атомных ядрах. Термоядерный синтез протонов, где «термо» намекает на необходимую него высокую температуру, а «ядерный синтез» подразумевает, что из отдельных частиц синтезируются целые ядра, приводит к созданию ядер гелия, масса каждого составляет чуть меньше, чем суммарная масса тех частиц, что пошли на его изготовление. Та масса, что пропадает во время синтеза, превращается в энергию согласно знаменитому и уже так хорошо знакомому нам уравнению Эйнштейна. Энергия, выраженная в массе (всегда в количестве, равном массе, умноженной на квадрат скорости света), может трансформироваться в иные формы энергии, например в дополнительную кинетическую энергию (энергию движения) быстро перемещающихся частиц, которые рождаются вследствие реакций ядерного синтеза.

В то время как новая энергия, полученная за счет термоядерного синтеза, расходится во все стороны, газ нагревается и начинает светиться. Затем у поверхности звезды та энергия, что ранее была заключена в отдельные ядра, вырывается в космос в форме фотонов, образованных газом в то время, как освобожденная при термоядерном синтезе энергия нагревала этот газ до температуры в несколько тысяч градусов. И, несмотря на то что этот огромный участок раскаленного газа все еще находится внутри космической утробы огромного межзвездного облака, мы уже можем смело поздравлять счастливого родителя Млечный Путь с рождением новой звезды.

Астрономы знают, что диапазон масс звезд составляет от одной десятой доли массы Солнца до величин, превосходящих ее почти в сотню раз. По не совсем ясным причинам в типичном гигантском газовом облаке может образоваться множество холодных газовых карманов, которые зачастую коллапсируют примерно в одно и то же время, давая жизнь звездам от мала до велика. Однако перевес на стороне звезд поменьше: на каждую крупную звезду приходится около тысячи малых. Тот факт, что в общей сложности лишь несколько процентов всего газа исходного облака принимают участие в формировании звезды, предлагает нам классическую загадку: почему этот «небольшой хвост» виляет этой «большой собакой» из газа и пыли, а не наоборот? Вероятно, ответ лежит в излучении новорожденных звезд, которое не дает новым звездам сформироваться из тех газа и пыли, что не пошли на образование самой новорожденной звезды.

Нам нетрудно объяснить нижний предел массы, которой может обладать новорожденная звезда. Карманам коллапсирующего газа с массой, составляющей менее одной десятой массы Солнца, не хватает гравитационной мощи того, чтобы раскалить свой центр до 10 миллионов градусов, необходимых для термоядерного синтеза водорода. Соответственно, рождение звезды, способной на ядерный синтез, невозможно. Вместо этого нам достанется неудавшаяся «почти звезда» — астрономы называют такие объекты коричневыми карликами. Не имея своего собственного источника энергии, коричневый карлик понемногу потухает, излучая тот скромный свет, что образовался во время изначального коллапса. Газообразные внешние слои коричневого карлика настолько прохладны, что многие крупные молекулы, которые обычно погибают вблизи более горячих звезд, прекрасно чувствуют себя и продолжают существовать около таких карликов. Из-за незначительной светимости их невероятно трудно обнаружить. Чтобы все же найти хотя бы несколько, астрофизикам приходится применять сложные методики наподобие тех, что используются иногда для обнаружения планет: ориентироваться по едва различимому инфракрасному излучению объектов. Лишь в последние несколько лет астрономам удалось разыскать во Вселенной достаточное количество коричневых карликов для того, чтобы даже разделить их как класс на несколько отдельных категорий.

Поделиться:
Популярные книги

Гранд империи

Земляной Андрей Борисович
3. Страж
Фантастика:
фэнтези
попаданцы
альтернативная история
5.60
рейтинг книги
Гранд империи

Взводный

Берг Александр Анатольевич
5. Антиблицкриг
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Взводный

Наследник павшего дома. Том IV

Вайс Александр
4. Расколотый мир
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник павшего дома. Том IV

Купец IV ранга

Вяч Павел
4. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец IV ранга

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

Мама из другого мира. Чужих детей не бывает

Рыжая Ехидна
Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.79
рейтинг книги
Мама из другого мира. Чужих детей не бывает

Сделай это со мной снова

Рам Янка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сделай это со мной снова

Аргумент барона Бронина

Ковальчук Олег Валентинович
1. Аргумент барона Бронина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Аргумент барона Бронина

Найдёныш. Книга 2

Гуминский Валерий Михайлович
Найденыш
Фантастика:
альтернативная история
4.25
рейтинг книги
Найдёныш. Книга 2

Неудержимый. Книга XIV

Боярский Андрей
14. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIV

Двойник Короля 5

Скабер Артемий
5. Двойник Короля
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Двойник Короля 5

Законы рода

Flow Ascold
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2