Чтение онлайн

на главную - закладки

Жанры

Как ломаются спагетти и другие задачи по физике
Шрифт:

Эта связь проиллюстрирована на рис. 3. Суть в том, что при исследовании маятника нам надо выйти из «зоны комфорта», то есть из плоскости рисунка, и рассмотреть трехмерное движение. У математического маятника в трехмерном мире есть два направления колебаний с одинаковыми периодами. Поэтому можно запустить маятник так, чтобы он не колебался вперед-назад, а двигался по кругу. При таком круговом движении возвращающая сила играет роль центростремительной силы, которая и обеспечивает круговую траекторию. И период его, повторимся, точь-в-точь совпадает с периодом колебания туда-сюда, поскольку движение по кругу – это, по сути, два наложившихся друг на друга линейных колебания.

Рис. 3. Переход от колебания бесконечно длинного маятника к вращению вокруг Земли

Представьте,

что мы такое круговое движение небольшой амплитуды запустили сначала по маленькому кругу над полюсом. Потом расширяем круг и одновременно смещаем грузик так, чтобы плоскость его движения рассекала Землю, а сам грузик по-прежнему двигался прямо над ее поверхностью (рис. 3). При таком смещении радиус круговой орбиты растет, но пропорционально ему растет и возвращающая сила. А если возвращающая сила линейно растет с отклонением, то и период колебаний не будет зависеть от амплитуды отклонения (снова вспоминаем Галилея). Значит, и в нашем случае такого кругового колебания маятника, опоясывающего Землю, период остается тем же. С другой стороны, с ростом охвата сила натяжения нити ослабевает, поскольку вертикальная (вдоль нити) компонента силы тяжести уменьшается. Наконец, когда мы сместимся к экватору, сила натяжения нити исчезнет, и мы как раз получим свободное движение по орбите вокруг Земли. А период движения останется ровно тем же, с которого мы и начинали.

В этой задаче можно увидеть связь еще с одним механическим явлением. Зададимся вопросом: какие, собственно, силы играют роль возвращающих в нашей задаче? Ответ прозвучит несколько неожиданно – это приливные силы со стороны Земли. Приливные силы как раз и возникают из-за неоднородности притяжения со стороны массивного объекта. Стандартное рассмотрение показывает, что эти силы действуют на тело (протяженное, не точечное!) так: они его растягивают вдоль направления на Землю и сплющивают – поперек. В нашем случае направление на Землю не важно, там все ограничено нитью. А вот сплющивание в горизонтальной плоскости как раз и порождает возвращающие силы. Обратите внимание, что приливные силы ощущаются не в фиксированной точке, а в ее окрестности. Именно поэтому приливные силы влияют на колеблющийся маятник, который в своем движении как бы прощупывает протяженную область пространства вблизи положения равновесия.

И напоследок – резкий прыжок на передний край физики, к недавно открытым гравитационным волнам. Когда гравитационная волна проходит сквозь тело, то она вызывает ровно такие же деформации, как и приливные силы. Условно говоря, гравитационные волны – это волны приливных деформаций, оторвавшиеся от источника и улетевшие прочь. Эта аналогия основывается на том, что поле деформаций метрики в гравитационной волне описывается ровно теми же компонентами тензора Римана, что и приливные силы от статического гравитационного поля. И тогда еще более наглядным становится тот факт, что гравитационные волны невозможно зарегистрировать в точке; для их регистрации нужен именно протяженный объект.

4. Как ломаются спагетти?

Даже в повседневных явлениях может скрываться нетривиальная физика. Один из примеров, ставший широко известным благодаря Ричарду Фейнману, – загадка ломающихся спагетти. Если взять тонкую спагеттину и аккуратно согнуть ее в дугу, не зажимая слишком сильно концы, а просто медленно сводя их друг с другом, то в какой-то момент спагеттина сломается. Странность заключается в том, что практически всегда она ломается не на две, а на три части (рис. 1), а иногда и больше. Концы обычно остаются в руках, а центральный кусочек, вращаясь, улетает прочь. Более того, если заснять этот процесс на скоростную камеру, выдающую тысячу кадров в секунду, мы увидим, что спагеттина ломается в двух или более местах практически одновременно. На одном кадре спагеттина еще целая, а на следующем мы уже видим все разломы.

Рис. 1. Изогнутая спагеттина ломается не в одном месте, а сразу в нескольких местах, причем эти разломы происходят практически одновременно. По фотографиям из популярной статьи [3]

Как так получается? Предположение, что это просто случайное совпадение двух разломов по времени, конечно, отметается. Вероятность такого точного совпадения для независимых событий очень мала. Да и к тому же если совпадение неизменно повторяется от раза к разу – то это уже закономерность, которая отражает некоторый физический процесс в ломающейся спагеттине и потому требует объяснения.

3

Vollmer M. and M"ollmann K.-P. Feynmans R"atsel der brechenden Spaghetti // Physik in unserer Zeit, 2012, vol. 43, pp. 46-47. DOI: 10.1002/piuz.201290006.

Кроме того, если взглянуть на правую схему на рис. 1, можно заметить, что средний

обломок расположен относительно двух крайних кусочков спагеттины несимметрично: с одной стороны зазор намного шире, чем с другой. Это тоже не случайность; такая картина регулярно повторяется от раза к разу, а значит, тоже должна иметь объяснение.

Задача

Объясните, как получается, что изогнутая спагеттина ломается почти одновременно в двух или более местах. Глядя на рис. 1, выясните, какой из двух разломов произошел раньше, а также в какую сторону вращается центральный обломок.

Предостережение. Эта задача довольно известная, и в интернете можно найти немало страниц и видеороликов с объяснениями. Но поскольку она рассчитана на физическое чутье, а не на ваши поисковые способности, мы предлагаем подумать над ней самостоятельно. Даже если вы уже когда-то читали про нее, постарайтесь, никуда не заглядывая, построить достаточно убедительное для себя объяснение и с его помощью ответить на второй вопрос.

Подсказка 1

В описании задачи и в схемах на рис. 1 уже можно углядеть два намека.

Если два разлома не могут произойти независимо, значит, они как-то связаны друг с другом. Могут ли удаленные друг от друга части неподвижной спагеттины перед разломом заранее «договориться» в духе «Ломаемся тут и тут на счет раз-два-три!»? Нет, не могут, поскольку нагрузка статична. Поэтому то, что мы видим, – это результат динамического, быстро развивающегося во времени процесса. Разлом первоначально происходит в каком-то одном месте, там, где спагеттина оказывается наиболее хрупкой на изгиб. А вот сразу после этого запускается некий механический процесс, который каким-то образом порождает второй разлом. Вот этот процесс вам и надо описать.

Второй намек содержится в схемах. Видно, что обломки не просто разошлись друг от друга, они выпрямились, что, конечно, совершенно естественно. Может быть, именно в этом распрямлении кроется отгадка?

Подсказка 2

Возьмем на вооружение предыдущую подсказку и представим себе описанную в ней ситуацию (рис. 2). На изогнутой спагеттине произошел первый разлом. Произошел он не посередине, а где-то сбоку, там, где спагеттина наименее прочна на излом – ведь никто не гарантирует, что механические свойства спагетти будут совершенно одинаковы по всей длине и что первой поддастся именно середина. Две части, которые раньше составляли единую спагеттину и по которым передавалось механическое напряжение, теперь потеряли механический контакт друг с другом. Они оказались в очень неустойчивом изогнутом состоянии, но никто эту изогнутость не поддерживает с одного конца. Распрямляясь, оба конца начинают выходить из неустойчивого состояния.

Рис. 2. Сразу после первого разлома две неравные части спагеттины начинают выпрямляться, каждая в свою сторону

Подумайте, как именно будет протекать это распрямление на первых порах, какие этапы будут быстрые, а какие – медленные. Это поможет вам догадаться, как будет меняться с течением времени форма более длинного куска спагеттины и откуда берется второй разлом.

Решение

Чтобы понять, как будет распрямляться изогнутый кусок спагеттины, надо «вжиться в его роль» – почувствовать те внутренние напряжения, которые действуют на стержень при изгибе. В таком состоянии в его толще возникают деформации: во внешней части это растяжение, во внутренней – сжатие материала. Эти напряжения тем сильнее, чем больше кривизна стержня. Они действуют так, что стремятся уменьшить кривизну, выпрямить стержень. И самое важное, что эти выпрямляющие напряжения действуют не в каком-то одном месте стержня, а распределены по всей его длине. Распрямиться хочет каждый кусочек изогнутого стержня.

Пока спагеттина цельная, эти напряжения передаются по всему стержню, держатся друг за друга и, в конечном счете, упираются в пальцы, в концевые опоры. После первого разлома у каждой половинки появляется свободный конец, к которому никаких компенсирующих усилий не прикладывается. Но внутри стержня выпрямляющие напряжения по-прежнему действуют. Раз им никто уже не противоборствует, они, собственно, и начинают выпрямлять стержень, разворачивая его части друг относительно друга.

Если бы деформация была локализована только в одном месте, она бы разворачивала один конкретный участок стержня (рис. 3, слева). Чем короче торчащий кусок стержня, тем быстрее шло бы распрямление (причем зависимость эта кубическая). Но в реальной ситуации деформация распределена в стержне повсюду. Все эти выпрямляющие усилия действуют одновременно, но разворачивают они участки стержня разной длины, а значит, и справляются с этой задачей за разное время (рис. 3, справа). Быстрее всего выпрямляется (и продолжает колебаться туда-сюда) самый кончик, а следом идут более длинные участки и так далее – в общем, спагеттина не просто распрямляется, она деформируется.

Поделиться:
Популярные книги

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2

Попаданка для Дракона, или Жена любой ценой

Герр Ольга
Любовные романы:
любовно-фантастические романы
7.17
рейтинг книги
Попаданка для Дракона, или Жена любой ценой

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Бастард

Майерс Александр
1. Династия
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард

Лучший из худший 3

Дашко Дмитрий
3. Лучший из худших
Фантастика:
городское фэнтези
попаданцы
аниме
6.00
рейтинг книги
Лучший из худший 3

Девятый

Каменистый Артем
1. Девятый
Фантастика:
боевая фантастика
попаданцы
9.15
рейтинг книги
Девятый

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Товарищ "Чума" 2

lanpirot
2. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 2

Хозяйка покинутой усадьбы

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка покинутой усадьбы

Пленники Раздора

Казакова Екатерина
3. Ходящие в ночи
Фантастика:
фэнтези
9.44
рейтинг книги
Пленники Раздора

Зайти и выйти

Суконкин Алексей
Проза:
военная проза
5.00
рейтинг книги
Зайти и выйти

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина