Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Шрифт:
Если сравнить табл. 4.3 с табл. 3.6, то можно легко прийти к выводу, что шесть из восьми параметров, характеризующих точность прогнозов, свидетельствуют в пользу уравнения авторегрессии с константой. Правда, при этом разница между ними была весьма незначительной. Однако вполне естественно, что при прогнозировании курсов валют нас в первую очередь интересует точность предсказаний, которую можно получить с помощью той или иной статистической модели. И с этой точки зрения уравнение авторегрессии 2-го порядка без константы оказалось точнее.
Чтобы сделать адекватный прогноз по курсу доллара, необходимо учесть как тренд, так и случайную компоненту, поскольку оба этих фактора существенно влияют на динамику валюты. Судя по табл. 4.3, нам удалось построить уравнение авторегрессии, с достаточно высокой степенью точности учитывающее тренд. Используя эту статистическую модель, можно делать точечные прогнозы, которые, правда, очень редко совпадают с фактическим курсом доллара. Объясняется это тем, что в ежемесячных колебаниях курса доллара достаточно большую роль играет не только тренд, но и случайная компонента. Судя по тому, что средняя ошибка по модулю равна 2,78 %, вполне очевидно, что эту цифру можно считать своего рода среднестатистическим индикатором вклада случайной компоненты в динамику курса доллара.
Поскольку точечный прогноз по определению не в состоянии указать нам диапазон вероятного отклонения фактического курса доллара от его предсказываемого значения, то с этой целью приходится использовать так называемый интервальный прогноз. Суть интервального прогнозирования заключается в определении интервала значений, в который прогнозируемое значение попадет с определенной долей вероятности. Чем выше интервал прогноза (разница между максимальным и минимальным значениями прогноза), тем больше вероятность (ее еще называют уровнем надежности) его реализации.
Однако прежде чем перейти к составлению интервальных прогнозов, нам необходимо, во-первых, проверить полученные остатки на стационарность, во-вторых, посмотреть, является ли распределение остатков нормальным.
В EViews проверить остатки на стационарность достаточно просто, для этого нужно только точно следовать алгоритму действий № 9.
С этой целью нужно выбрать строку 2 WORKFILE (рабочий файл), а затем открыть файл RESID (остатки), который появляется в рабочем файле после того, как мы воспользовались опцией FORECAST (см. алгоритм действий № 8 «Как оценить точность статистической модели в EViews»).
Далее в файле RESID нам следует воспользоваться опцией UNIT ROOT TEST (тест на единичный корень), в результате чего появится (рис. 4.1) мини-окно UNIT ROOT TEST, в котором нам нужно выбрать следующие опции.
Параметр TEST TYPE (тип теста) установим на опции AUGMENTED DICKEY — FULLER (расширенный тест Дикки — Фуллера), поскольку этот тест чаще всего используется на практике, так как он учитывает возможную автокорреляцию в остатках. Параметр TEST FOR UNIT ROOT IN (тест на единичный
Теория тестирования стационарности временных рядов изложена ниже. А чтобы просто сделать вывод о стационарности временнoго ряда на основе расширенного теста Дикки — Фуллера, нужно знать следующее. После того как ранее мы заполнили мини-окно Unit Root test и щелкнули кнопку ОК, в результате у нас получилась табл. 4.4 с итогами теста. При этом главное внимание нужно обратить на верхнюю строчку теста, выделенную жирным шрифтом: Augmented Dickey — Fuller test statistic (статистика расширенного теста Дикки — Фуллера). Поскольку статистика теста Дикки — Фуллера в этом случае равна 11,05764, а ее значимость (Prob.) равна 0,0000, то нулевая гипотеза о том, что D(RESID) имеет единичный корень, отвергается. Следовательно, мы можем принять альтернативную гипотезу о стационарности полученных остатков.
При этом в табл. 4.4 даются критические значения теста (Test critical values), на основе которых о стационарности остатков можно судить с различным уровнем надежности. Так, в том случае, когда статистика расширенного теста Дикки — Фуллера меньше -2,576127, то вывод о стационарности остатков можно сделать с 99 %-ным уровнем надежности, а если меньше -1,942361, но больше -2,576127, то с 95 %-ным уровнем надежности. Если интересующая нас статистика меньше -1,615684, но больше -1,942361, то уровень надежности вывода о стационарности остатков снижается до 90 %.
В основе теории единичного корня лежит довольно простая формула, которая считается базовой для понимания стационарности в уравнениях авторегрессии:
Yt = Yt-1 + et, (4.4)
где Yt — результативная зависимая переменная;
Yt-1 — независимая факторная переменная с лагом в один период (в нашем случае в один месяц);
— коэффициент регрессии;
еt — остатки.
Уравнение авторегрессии 1-го порядка считается стационарным в том случае, когда коэффициент регрессии < 1. Соответственно если > 1, то оно считается нестационарным, а следовательно, волатильность с течением времени может нарастать и стремиться к бесконечности. Следует заметить, что при необходимости в формулу (4.4) может быть добавлена константа либо константа и тренд, если, конечно, они будут статистически значимыми.
Проверка авторегрессионного процесса на стационарность проводится следующим образом. Согласно нулевой гипотезе, предполагается, что если = 1, то временной ряд нестационарный, а в случае ее опровержения принимается альтернативная гипотеза, утверждающая, что < 1, а следовательно, ряд стационарный.