Чтение онлайн

на главную - закладки

Жанры

Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews
Шрифт:

6.6. Построение стационарной модели ARMA с оптимизированным временным рядом

Чем же объясняется слишком широкий диапазон интервальных прогнозов для большей части наблюдений, полученных по модели log(USDollar) = с + а x log(USDollar(-l))? Ведь мы уже знаем, что если временной ряд является слабо стационарным, то это означает отсутствие, во-первых, тренда; во-вторых, строго периодических колебаний; в-третьих, систематических изменений дисперсии; в-четвертых, каких-либо иных систематических изменений

во временном ряде (см. главу 1). Если систематические изменения дисперсии отсутствуют, то, следовательно, и абсолютная величина диапазона интервального прогноза не должна с течением времени существенно изменяться. Тем не менее по абсолютной величине интервальные прогнозы существенно изменились, что очевидно связано с неправильной спецификацией статистической модели.

Правда, если мы будем составлять интервальные прогнозы относительно логарифмического ряда данных, то в этом случае разница в их диапазоне относительно первого и последнего наблюдения будет не столь значительной. Так, для июля 1992 г. доля диапазона интервального прогноза составит 3,71 % от логарифмического фактического курса доллара, а в июле 2010 г. — 1,97 %.

Почему же стационарная модель log(USDollar) = с + а x log(USDollar(-l)) + МА(1) не позволяет построить прогнозы с оптимальной шириной интервальных прогнозов при переходе к исходному временному ряду? В главе 1 (см. 1.2) мы уже научились распознавать стационарность временного ряда с помощью построения его графика. Попробуем построить аналогичный график для логарифмических остатков (за период с июля 1992 г. по июнь 2010 г.), полученных в результате решения уравнения регрессии по стационарной модели log(USDollar) = с + а x log(USDollar(-l)) + МА(1). В результате получится диаграмма, изображенная на рис. 6.12.

Исходя из рис. 6.12 можно сделать следующие выводы: во-первых, большая часть логарифмических остатков, полученных по стационарной модели log(USDollar) = с + а x log(USDollar(-l)) + МА(1), колеблется примерно в одном диапазоне вокруг нулевого уровня; во-вторых, с течением времени волатильность логарифмических остатков постепенно снижается; в-третьих, на графике видны три значительных всплеска волатильности остатков, однако последний всплеск по сравнению с предыдущими явно незначительный. Отсюда можно сделать вывод, что логарифмические остатки стационарной (точнее сказать, слабо стационарной) статистической модели асимптотически стремятся к относительно узкому диапазону колебаний, т. е. становятся все более стационарными, однако на начальном этапе временного ряда эти колебания еще довольно велики.

Таким образом, чтобы получить оптимальную ширину интервальных прогнозов для стационарной модели log(USDollar) = с + а x log(USDollar(-l)) + МА(1), необходимо убрать из базы данных часть временного ряда с наиболее волатильными остатками. Для отсечения наиболее волатильной части остатков будем использовать тест Чоу на точность прогноза. Исходя из рис. 6.12 и с учетом данных табл. 5.4 «Рейтинг наблюдений по величине скачка курса доллара», которые показывают максимальный рост волатильности после дефолта августа 1998 г., проведем тест на точность прогноза относительно сентября 1998 г. В результате получим табл. 6.20, согласно которой нельзя сделать однозначный вывод о наличии структурного изменения. Дело в том, что уровень значимости (Probability) F– критерия получился больше 0,05, что свидетельствует в пользу нулевой гипотезы об отсутствии структурных изменений. Однако уровень значимости LR– статистики равен 0,001354, что существенно меньше 0,05 и однозначно говорит о наличии структурного изменения. В этой ситуации более надежна LR-статистика, поскольку F– критерий предполагает наличие независимых и нормально распределенных остатков, чего не может быть по определению при решении уравнений авторегрессии. Поэтому нулевая гипотеза о стабильности временного ряда, включающего наблюдения с сентября 1998 г. по июнь 2010 г., отвергается.

Далее проведем тест на точность прогноза относительно октября 1998 г. В результате получим табл. 6.21, согласно которой можно сделать однозначный вывод о структурной стабильности выделенного временного ряда. Поскольку уровень значимости (Probability) F– критерия получился больше 0,05 и уровень значения LR– статистики оказался равен 1,0, что однозначно говорит об отсутствии структурного изменения, нулевая гипотеза о стабильности временнoго ряда, включающего наблюдения с октября 1998 г. по июнь 2010 г., принимается.

Исходя

из результатов теста Чоу на точность прогноза построим статистическую модель log(USDollar) = с + а x log(USDollar(-l)) + МА(1) на основе данных за период с октября 1998 г. по июнь 2010 г. Вывод итогов после решения этого уравнения представлен в табл. 6.22, из которой следует, что уровень значимости у всех переменных, включенных в модель, оказался равен нулю и все они оказались статистически значимыми, как при 5 %-ном, так и при 1 %-ном уровне значимости.

Судя по табл. 6.23, уменьшение базы данных способствовало росту точности стационарной статистической модели по ряду параметров. С точки зрения прогнозирования особое значение имеет тот факт, что средняя ошибка по модулю уменьшилась на 1,71 процентных пункта, т. е. весьма существенно. Правда, средняя ошибка по модулю, напротив, выросла на 4,7 коп. Но это объясняется тем фактом, что средний курс доллара за период с октября 1998 г. по июнь 2010 г. оказался равен 28,70 руб. и был в 7,41 раза выше среднего курса доллара за период с июня 1992 г. по сентябрь 1998 г., равного 3,87 руб.

Следующим шагом будет расчет точечных и интервальных прогнозов дня всех наблюдений, на основе которых составлена наша статистическая модель (за период с октября 1998 г. по июнь 2010 г.), а также на июль 2010 г. (курс доллара по этому месяцу не включен в базу данных). При этом точечный прогноз по курсу доллара на июль 2010 г., вычисленный по этой модели, оказался равен 31,02 руб. (фактический курс доллара в июле 2010 г. равнялся 30,19 руб.). Заметим, что этот прогноз оказался на 17 коп. точнее аналогичного точечного прогноза (31,19 руб.), рассчитанного по модели log(USDollar) = с +а x log(USDollar(-l)) + МА(1), построенной по данным за весь период (с июня 1992 г. по июнь 2010 г.).

Далее на основе алгоритма действий № 12 составим по модели log(USDollar) = с + а x log(USDollar(-l)) + МА(1), построенной по данным с октября 1998 г. по июнь 2010 г., соответствующие интервальные прогнозы с разными уровнями надежности. Назовем последнюю модель стационарной моделью с оптимизированным временным рядом.

Посмотрим, как у этой модели заданные уровни надежности соотносились с фактической долей точных интервальных прогнозов. После проведения соответствующих подсчетов удалось выяснить, что при 95 %-ном уровне надежности из 142 составленных по этой модели интервальных прогнозов в 138 случаях фактический курс доллара оказался в рамках интервального прогноза, т. е. получился точным. Следовательно, при 95 %-ном уровне надежности фактическая вероятность точного интервального прогноза у стационарной модели с оптимизированным временным рядом достигла 97,2 %, т. е. получилась на 2,2 процентного пункта выше заданного 95 %-ного уровня надежности. Судя по табл. 6.24, доля точных прогнозов по этой модели оказалась незначительно ниже заданного уровня надежности лишь при 99,9 %-ном уровне. В то время как при 99 %-ном уровне надежности и ниже доля точных фактических прогнозов становится выше заданного уровня. Причем эта положительная разница достигает максимума при 40 %-ном уровне надежности, когда она равна 26,2 процентного пункта.

Если сравнить данные табл. 6.24 с данными табл. 6.18, то легко сделать вывод, что интервальные прогнозы, составленные по модели log(USDollar) = с + а x log(USDollar(-l)) + МА(1) с оптимизированным временным рядом, получились надежнее интервальных прогнозов, рассчитанных на основе аналогичной модели с полным временным рядом.

У стационарной модели, построенной на основе базы данных за период с октября 1998 г. по июнь 2010 г., есть еще один весьма ощутимый плюс — у нее более приемлемый диапазон интервальных прогнозов. Так, при прогнозе на октябрь 1998 г. общий диапазон интервального прогноза (верхняя граница интервального прогноза минус нижняя граница интервального прогноза) при 95 %-ном уровне надежности составил 1,84 руб. (табл. 6.25), или 11,48 % от фактического курса доллара, который тогда равнялся 16,01 руб. В то время как при прогнозе на июль 2010 г. общий диапазон интервального прогноза был равен 2,96 руб., или 9,79 % от фактического курса доллара, который тогда равнялся 30,19 руб. Нетрудно также заметить, что за счет уменьшения стандартного отклонения (в структурно стабильном временном ряде, естественно, наблюдается более низкий уровень волатильности) ширина диапазона интервального прогноза в табл. 6.25 существенно меньше, чем в табл. 6.19.

Поделиться:
Популярные книги

Зубных дел мастер

Дроздов Анатолий Федорович
1. Зубных дел мастер
Фантастика:
научная фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Зубных дел мастер

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

Кодекс Охотника. Книга X

Винокуров Юрий
10. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга X

Хозяин Теней

Петров Максим Николаевич
1. Безбожник
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Хозяин Теней

Опасная любовь командора

Муратова Ульяна
1. Проклятые луной
Фантастика:
фэнтези
5.00
рейтинг книги
Опасная любовь командора

Друд, или Человек в черном

Симмонс Дэн
Фантастика:
социально-философская фантастика
6.80
рейтинг книги
Друд, или Человек в черном

Волхв

Земляной Андрей Борисович
3. Волшебник
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волхв

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Всемирная энциклопедия афоризмов. Собрание мудрости всех народов и времен

Агеева Елена А.
Документальная литература:
публицистика
5.40
рейтинг книги
Всемирная энциклопедия афоризмов. Собрание мудрости всех народов и времен

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5

Морской волк. 1-я Трилогия

Савин Владислав
1. Морской волк
Фантастика:
альтернативная история
8.71
рейтинг книги
Морской волк. 1-я Трилогия

Прогрессор поневоле

Распопов Дмитрий Викторович
2. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прогрессор поневоле