Как учится машина. Революция в области нейронных сетей и глубокого обучения
Шрифт:
Эти два нейробиолога получили Нобелевскую премию по физиологии в 1981 г. за свою работу над зрительной системой кошек. Они обнаружили, что зрение возникает в результате прохождения визуального сигнала через несколько слоев нейронов, от сетчатки до первичной зрительной коры, затем в другие области зрительной коры, и, наконец – в нижневисочную кору. Нейроны в каждом из этих слоев выполняют особые функции. В первичной зрительной коре каждый нейрон связан только с небольшой областью поля зрения, а именно со своим рецепторным полем. Такие нейроны называются «простыми». В следующем слое другие нейроны включают активацию предыдущего слоя, что помогает поддерживать представление изображения, если объект немного перемещается в поле зрения. Такие нейроны называются «сложными».
Таким
В начале 1980-х гг. идеи Фукусимы поддерживали и другие ученые. Некоторые североамериканские исследовательские группы также работали в этой области: психологи Джей Макклелланд и Дэвид Румелхарт, биофизики Джон Хопфилд и Терри Сейновски, и ученые-компьютерщики, в частности Джеффри Хинтон – тот самый, с которым я впоследствии разделю Премию Тьюринга, присужденную в 2019 г.
Мой выход на сцену
Я начал интересоваться всеми этими темами в 1970-х гг. Возможно, любопытство к ним зародилось во мне еще, когда я наблюдал за моим отцом, авиационным инженером и мастером на все руки, который в свободное время занимался электроникой. Он строил модели самолетов с дистанционным управлением. Я помню, как он сделал свой первый пульт для управления небольшой машиной и лодкой во время забастовок в мае 1968 г., когда он проводил много времени дома. Я не единственный в семье, кому он передал свою страсть к любимому делу. Мой брат, который на шесть лет младше меня, тоже сделался ученым-компьютерщиком. После академической карьеры он стал исследователем в компании Google.
С самого раннего детства меня манили новые технологии, компьютеризация, покорение космоса… Еще я мечтал стать палеонтологом, потому что меня очень интриговал человеческий интеллект и его эволюция. Даже сегодня я по-прежнему верю, что работа нашего мозга остается самой загадочной вещью в мире. Я помню, как в Париже на большом экране я вместе с моими родителями, а также дядей и тетей – «фанатами» научной фантастики, смотрел фильм «2001: Космическая одиссея». Мне было тогда восемь лет. Фильм затронул все, что я любил: космические путешествия, будущее человечества и восстание суперкомпьютера «Хэл», который готов был убивать ради собственного выживания и успеха миссии. Уже тогда меня волновал вопрос о том, как воспроизвести человеческий интеллект в машине.
Неудивительно, что после школы я захотел воплотить эти мечты в жизнь. В 1978 г. я поступил в Парижскую высшую школу электронной инженерии ('Ecole Sup'erieure d'Ing'enieurs en 'Electrotechnique et 'Electronique, ESIEE) в которую можно подавать заявление сразу после получения степени бакалавра, без затрат времени на дополнительную подготовку. (Откровенно говоря, длинная учеба – не единственный способ добиться успеха в науке. Я могу это подтвердить на своем примере.) А поскольку учеба в ESIEE предоставляет студенту некоторую свободу, я сумел воспользоваться этим.
Плодотворное чтение
Меня воодушевили новости о дебатах на конференции Cerisy о врожденном и приобретенном знании [16] , прочитанные мною в 1980 г. Лингвист Ноам Хомски подтвердил, что в мозге существуют исходно заложенные структуры, позволяющие человеку
16
Th'eories du langage, th'eories de l'apprentissage: le d'ebat entre Jean Piaget et Noam Chomsky, d.bat recueilli par Maximo Piatelli-Palmarini, Centre Royaumont pour une science de l'homme, Seuil, Points, 1979.
Так я и узнал о существовании обучающейся машины. Эта тема меня просто очаровала! Поскольку я не учился по средам после обеда, я начал рыскать по полкам библиотеки Национального института компьютерных и автоматических исследований в Роккенкуре (National Institute for Research in Digital Science and Technology, сокращенно «Inria»). У этого учреждения самый богатый библиотечный фонд ИТ-литературы в Иль-де-Франс. Я вдруг понял, что на Западе больше никто не работает с нейронными сетями, и с еще большим удивлением обнаружил, что книга, положившая конец исследованиям перцептрона, принадлежит перу того же самого Сеймура Паперта!
Теория систем, которую в 1950-х гг. мы называли кибернетикой, и которая изучает естественные (биологические) и искусственные системы – еще одна моя страсть. Возьмем, например, систему регулирования температуры тела: организм человека поддерживает температуру 37 °C благодаря наличию своеобразного «термостата», который корректирует разницу между своей температурой и температурой снаружи.
Меня увлекла идея самоорганизации систем. Каким образом относительно простые молекулы или объекты могут спонтанно организовываться в сложные структуры? Как может появиться интеллект из большого набора простых взаимодействующих нейронов?
Я изучал математические работы по теории алгоритмической сложности Колмогорова, Соломонова и Чайтина. Книга Дуды и Харта [17] , о которой я уже упоминал, стала для меня настольной. Я читал журнал «Биологическая кибернетика» («Biological Cybernetics. Advances in Computational Neuroscience and in Control and Information Theory for Biological Systems», издательство Springer), посвященный математическим моделям работы мозга или живых систем.
Все эти вопросы, оставленные без ответа в период застоя искусственного интеллекта, не выходили у меня из головы, и у меня постепенно стало формироваться убеждение: если мы хотим создавать интеллектуальные машины, недостаточно, чтобы они работали только логически, они должны быть способными учиться, совершенствоваться на собственном опыте.
17
Richard O. Duda, Peter E. Hart, Pattern Classification and Scene Analysis, p. 6.
Читая все эти труды, я понимал, что часть научного сообщества разделяет мое виденье проблемы. Вскоре я познакомился с работами Фукусимы и задумался о способах повышения эффективности нейронных сетей неокогнитрона. К счастью, ESIEE предоставлял студентам компьютеры, которые для того времени были очень мощными. Мы писали программы с Филиппе Метсу, школьным другом, любителем искусственного интеллекта, как и я, хотя его больше интересовала психология обучения детей. Преподаватели математики согласились заниматься с нами дополнительно. Вместе мы пытались моделировать нейронные сети. Но эксперименты отнимали очень много сил: компьютеры не тянули наши эксперименты, а написание программ было сплошной головной болью.