Чтение онлайн

на главную - закладки

Жанры

Шрифт:

 

Слияние капель эпоксидной смолы в невесомости

Наблюдая за слиянием сфер в невесомости с помощью кинокамеры, можно получить истинный «портрет» явления и оценить интуицию и зор­кость теоретика.

Кадры фильма свидетельствуют о том, что в основном Френкель был прав, но только в основном. Действитель­но, быстрее иных участков поверхности движется вогну­тая область контактного перешейка, но движется не толь­ко она. Оказывается, что, стремясь поскорее слиться, сферы меняют свою форму и рядом с перешейком. Поэто­му центры сфер сближаются быстрее, чем это следует из расчетов Френкеля. Поэтому и площадь контакта со временем изменяется по очень сложному закону, а закон, выведенный Френкелем, проглядывает сквозь последова­тельность огромного числа точек лишь как нечто усреднен­ное, справедливое приближенно. На киноленте, кроме того, были

запечатлены и более далекие стадии слияния сферических капель, которые описать с помощью формул чрезвычайно трудно. Начинает перемещаться вещество во всем объеме сферы, в каждой точке с разной скоростью и в разных направлениях, и оказывается практически не­возможным усмотреть черты, пригодные для создания по­хожей «карикатуры».

Бот уже четверть века идея Френкеля определяет де­ятельность всех тех, кто занимается изучением процесса спекания. Кинокамера не отменила исследование 26-лет­ней давности, а лишь указала на детали, от которых ос­вободила сложное явление интуиция теоретика.

Статья Эйнштейна о лорде Кельвине

В конце 1924 года в немецком журнале «Naturwissen­schaften» появилась статья Эйнштейна «К столетию со дня рождения лорда Кельвина». Эйнштейн счел своим долгом почтить память лорда Кельвина-Томсона — вы­дающегося английского физика прошлого века. Статья начинается с характеристики Кельвина — «...один из наиболее сильных и плодотворных мыслителей XIX сто­летия...», «...основатель теоретической школы, из которой вышел гениальный теоретик нового времени К .Максвелл...», «...одаренный богатой фантазией, редким умением при­менять математический аппарат и проникновенным умом...», «.. .не многие ученые были столь же плодотворны». А затем — о конкретных заслугах и достижениях. «Наиболее су­щественный вклад Томсона в развитие физики — это ос­нование термодинамики...»; «В возрасте 23 лет он вводит одно из фундаментальнейших понятий современной физи­ки — абсолютную температуру...»; «Обилие результа­тов... в области учения о теплоте, гидродинамики, учения об электричестве, навигации, физической географии и из­мерительной техники...»

Схема опыта Кельвина, в котором с помощью капель получено высо­кое напряжение

В мемориальной статье Эйнштейн стремится принести дань глубокого уважения блестящему ученому и решает не писать о всей деятель­ности Кельвина, а показать четкость его исследователь­ской мысли на нескольких примерах, которые в свое время Эйнштейна особенно восхитили. Из множества ра­бот Кельвина он выбрал те, которые имеют касательство к каплям, вернее, из трех ра­бот Кельвина, особенно пора­зивших Эйнштейна, две ока­зались о каплях. О них и рассказ.

В первой работе предлагается идея генератора высокого напряжения, в котором главным работающим элементом являются капли. Вместо пересказа принципа работы гене­ратора я приведу цитату из статьи Эйнштейна.

«Из заземленной водонаполненной трубки [см. рисунок] вытекают две струи, которые внутри пустотелых изо­лированных металлических цилиндров С и С' разбиваются на капли. Эти капли падают в изолированные подставки А и А' со вставленными воронками. С соединен провод­ником с А', а С' с А. Если С заряжен положительно, то образующиеся внутри С капли заряжаются отрицательно и отдают свой заряд А , заряжая тем самым С' отрицатель­но. Из-за отрицательного заряда С' образующиеся внутри него водяные капли получают положительный заряд и разряжаются в А', увеличивая его положительный заряд. Заряды С , А' и С', А возрастают до тех пор, пока изоля­ция препятствует проскакиванию искры».

Идея Кельвина изумительна по простоте и очевидности, и мы в своей лаборатории решили воплотить ее в реаль­ных каплях и металлических бездонных цилиндрах и ста­канах. Все, что изображено на рисунке, мы разместили под стеклянным колпаком, оградив от различных внешних воздействий, а от цилиндров С и С' вывели из колпака проводники и присоединили их к двум одинаковым метал­лическим шарикам диаметром 1 см. Шарики укрепили на специальной подставке, и расстояние между ними сделали неизменным — 1 мм. Затем, открыв зажимы, дали возмож­ность каплям падать и начали наблюдать: подсчитывали число упавших капель и следили, когда между шарами проскочит искра.

В тот момент, когда проскочила искра, между шарика­ми была разность потенциалов 3000 вольт! Никто в наши дни не пользуется капельным методом, чтобы создавать высокие напряжения,— существуют

способы помощнее... И все же нельзя не понять Эйнштейна, который был вос­хищен кельвиновской идеей.

В мемориальной статье Эйнштейн рассказал еще об одной идее Кельвина, имеющей прямое отношение к кап­ле. Кельвин заинтересовался следующим вопросом: как зависит давление пара жидкости вблизи поверхности от степени ее искривленности? Если рассуждать предметно, то речь идет о том, насколько отличается давление пара вблизи изогнутой поверхности водяной капли от давления пара вблизи плоской поверхности воды, налитой в широ­кое блюдце. В поисках ответа па этот вопрос Кельвин рассуждал так. Допустим, что в сосуд с жидкостью по­гружена тонкая трубка, внутренний радиус которой R . Если жидкость не смачивает материал, из которого сдела­на трубка, то ее уровень в трубке расположится ниже, чем в широком сосуде, в который налита жидкость. Произой­дет это по причине очевидной: в связи с тем что жидкость не смачивает стенок трубки, поверхность жидкости в ней будет выпуклой, полусферической, именно поэтому к жид­кости будет приложено давление, направленное внутрь, то самое лапласовское давление, с которым мы уже встре­чались, обсуждая опыт Плато. Под влиянием этого давле­ний уровень жидкости в трубке опустится ровно настолько, чтобы давление из- sa разности уровней жидкости в труб­ке и вне ее в точности равнялось лапласовскому. Его ве личину мы знаем: Р л = 2 / R Разность уровней h обусловит давление Р = gh . Буквами обозначены следующие ве­личины: — поверхностное натяжение жидкости, — ее плотность, g — ускорение силы тяжести. Приравняв два эти давления, мы убедимся, что разница уровней h = 2/ gR .

Таков результат первого этапа рассуждений Кельвина.

 

К расчету влияния кривизны поверхности жидкости на дав­ление пара над ней

Второй этап — естественное продолжение первого. Над всей поверхностью жидкости — и той, которая в трубке, и той, которая в широком со­суде,— имеется пар этой жид­кости, однако не везде дав­ление, оказываемое им на жидкость, одинаково: несколько большим оно будет над по­верхностью жидкости в труб­ке, так как слой пара над ней толще на величину h . Очевид­но, дополнительное давление этого слоя равно Р = 0 gh, где 0 — плотность газа, которая много меньше плот­ности жидкости. Величину h мы знаем — она была найдена на первом этапе рассужде­ний — и, следовательно, можем определить величину Р. Она очень важна, и поэтому формулу, которая определяет эту величину, мы вынесем на отдельную строку:

 

По поводу этой формулы Эйнштейн заметил, что она действительна «независимо от того, какими причинами обусловлено возникновение кривизны поверхности».

Можно понять восхищение, испытанное Эйнштейном, когда он ознакомился с логикой рассуждений и формулой Кельвина. Ведь, казалось бы, Кельвин обсуждал совсем частный пример: широкий сосуд, в нем жидкость, в жид­кости капилляр и т. д. А пришел к закону природы огром­ной важности и выразил его формулой, в которой ничего не содержится от того частного примера, который обсуж­дался. Разве что только R — радиус тонкой трубочки. Но ведь трубочка, как оказалось, нужна была только для

того, чтобы получить участок изогнутой поверхности, ограничивающей жидкость.

Вспомним о капле — она вся ограничена изогнутой по­верхностью, и значит, давление пара вблизи нее будет повышено на величину, определяемую формулой Кельви­на: чем меньше радиус капли, тем большее давление пара над ней. В этом легко убедиться с помощью многих опытов — далее мы с ними еще встретимся, а здесь, вместе с Эйн­штейном, восхитимся талантом Кельвина — его проница­тельным умом и великолепной логикой.

Капля пустоты

Много лет подряд вместе с моим покойным учителем Бори­сом Яковлевичем Пинесом мы занимались изучением по­ристых кристаллических тел. Так случилось, что я ни разу не спросил, как у него возникло представление о капле пустоты — поре в кристалле. А сейчас, к сожа­лению, спросить уже некого и остается лишь стро­ить догадки, сопоставляя факты и отрывки случайных раз­говоров.

Образ капли пустоты прочно вошел в физику твердого тела, о нем вспоминают всякий раз, когда надо осмыс­лить поведение различных дефектов в кристалле. И я расскажу о том, как этот образ возник. На примере рож­дения образа капли пустоты можно проследить, как вя­жется логическое кружево мысли ученого, где сосущест­вуют и конкурируют фантазия и строгая формальная ло­гика.

Поделиться:
Популярные книги

Кодекс Охотника. Книга XIX

Винокуров Юрий
19. Кодекс Охотника
Фантастика:
фэнтези
5.00
рейтинг книги
Кодекс Охотника. Книга XIX

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Сделай это со мной снова

Рам Янка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сделай это со мной снова

Свадьба по приказу, или Моя непокорная княжна

Чернованова Валерия Михайловна
Любовные романы:
любовно-фантастические романы
5.57
рейтинг книги
Свадьба по приказу, или Моя непокорная княжна

Наследник

Шимохин Дмитрий
1. Старицкий
Приключения:
исторические приключения
5.00
рейтинг книги
Наследник

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Пять попыток вспомнить правду

Муратова Ульяна
2. Проклятые луной
Фантастика:
фэнтези
эпическая фантастика
5.00
рейтинг книги
Пять попыток вспомнить правду

Сумеречный стрелок 7

Карелин Сергей Витальевич
7. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок 7

Старшеклассник без клана. Апелляция кибер аутсайдера 2

Афанасьев Семен
2. Старшеклассник без клана. Апелляция аутсайдера
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Старшеклассник без клана. Апелляция кибер аутсайдера 2

Точка Бифуркации

Смит Дейлор
1. ТБ
Фантастика:
боевая фантастика
7.33
рейтинг книги
Точка Бифуркации

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Мастер 4

Чащин Валерий
4. Мастер
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Мастер 4

Лучший из худших

Дашко Дмитрий
1. Лучший из худших
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Лучший из худших