Чтение онлайн

на главную - закладки

Жанры

Каталитический риформинг бензинов. Теория и практика
Шрифт:

молекулы СО и атомов металлов

Этот пример из металлорганической химии имеет прямую аналогию в гетерогенном катализе и позволяет понять, почему увеличение размера активного ансамбля приводит к более легкому протеканию структурно-чувствительных реакций.

Сказанное выше не означает, что молекула СО не может быть донором электронов для атома металла.

Наличие в молекуле 3-орбитали, имеющей характер неподеленной электронной пары, причем обладающей небольшим разрыхляющим эффектом, позволяет молекуле СО выступать в качестве -донора по отношению к элементам, имеющим незаполненные d– орбитали.

Необходимо учитывать, что преобладающий вклад дативного взаимодействия обусловлен поляризацией

связи С–О, являющейся причиной высокого значения интеграла перекрывания d–*.

Для молекул с меньшей поляризацией связей этот эффект будет меньше или вообще отсутствовать, например, дипольный момент связи С–С равен нулю. Вместе с тем связь С–Н существенно поляризована: дипольный момент связи составляет 0,3 дебая (Д), что почти в три раза больше, чем дипольный момент молекулы СО (0,11 Д).

Такие различия в поляризации, как будет показано далее, вполне могут быть причиной различных скоростей реакций дегидрирования и гидрогенолиза углеводородов, протекающих на катализаторе платформинга.

После рассмотрения координационной связи в металлорганических соединениях перейдем к анализу взаимодействия молекул с поверхностью металла. Это взаимодействие лежит в основе химической адсорбции и определяет каталитическое действие переходных металлов.

Основным отличием взаимодействия с поверхностью является то, что молекула образует связи не с орбиталями отдельного свободного атома металла, а с энергетическими зонами, возникающими при перекрывании орбиталей отдельных атомов. Это создает дополнительные возможности для образования химической связи, как мы увидим далее.

Формирование энергетических зон может быть описано двумя различными способами.

В приближении свободных электронов (ПСЭ) или модели электронного газа, используемых в физике твердого тела, зоны формируются аналогично тому, как происходит квантование энергетических уровней электрона, помещенного в прямоугольную потенциальную яму [11; 25].

Наличие периодической решетки, образованной атомами, приводит к расщеплению континуума энергий электронов на серию зон Бриллюэна.

В приближении сильной связи (ПСС) зоны формируются при перекрывании орбиталей атомов аналогично тому, как это происходит при образовании молекулы.

На рис. 24 представлено образование s– зоны для n атомов лития. Аналогичным образом формируются s– , pи d– зоны для d– элементов.

Рис. 24. Схема образования s– зоны для n атомов лития

Вследствие небольшого различия в энергиях s– и p– атомных орбиталей происходит гибридизация АО, в результате образуется одна гибридная sp– зона, как показано ниже (рис. 25).

Рис. 25. Схема образования sp– и d– зон металла

50%-ный s– характер sp– орбиталей обеспечивает сильное перекрывание и расщепление энергетических уровней образующихся орбиталей, что приводит к формированию широкой зоны, правда, с маленькой плотностью электронных состояний из-за ограниченного количества s и p– электронов – максимум два электрона на

атом переходного металла. Sp– зона играет важную роль в начальном взаимодействии молекулы с поверхностью, обеспечивая снижение энергии адсорбата, однако это взаимодействие не приводит к расщеплению энергетических уровней и активации молекулы и не является причиной различий каталитических свойств металлов. Эти различия обусловлены структурой d– зон переходных металлов.

В формировании d– зоны участвуют все пять атомных dорбиталей, каждая из которых образует свою зону, состоящую из набора связующих, несвязующих и разрыхляющих орбиталей.

Наибольшее расщепление с формированием зоны самой большой ширины происходит при образовании -связей, в котором по соображениям симметрии могут участвовать только dz2– орбитали.

Остальные dорбитали участвуют в менее эффективном

– связывании (dyz и dzx) и еще менее эффективном -связывании (dxy и dx2y2).

Энергии связующих -, -, -МО соотносятся как 1:0,8:0,1.

Схема образования -, -, -МО-зон представлена на рис. 26.

Рис. 26. Схема образования -, -, -МО-зон [25]

Для наглядности уровни АО орбиталей разнесены. Фактически все они имеют одинаковый уровень энергии, так как являются вырожденными орбиталями с одинаковым главным квантовым числом n. В середине зоны находятся несвязывающие МО, уровень энергии которых близок к таковой атомных орбиталей. Ниже этого уровня находятся связующие МО, энергия которых увеличивается с ростом числа узловых плоскостей. Низ зоны занимают полностью связующие МО, не имеющие узловых плоскостей, разделяющих соседние атомы металла.

Связующие орбитали имеют низкий уровень энергии и являются аналогом внутренних электронов атома, не принимая участия в хемосорбции.

Верхняя часть зоны после несвязующих орбиталей занята разрыхляющими орбиталями, которые, по существу, и представляют собой валентные электроны металла, ответственные за формирование хемосорбционных связей с молекулами адсорбата.

Самые верхние орбитали зоны представлены полностью разрыхляющими - и -орбиталями, образованными dz2– , dxz и dyz– атомными орбиталями.

Молекулярные орбитали, образованные x2y2 и xy–АО, находятся в центральной части зоны и не участвуют в хемосорбции.

Разница в энергиях самой верхней и самой нижней МО называется шириной зоны и вычисляется по формуле

W = EnE1.

Важной характеристикой зоны является плотность состояний – это отношение числа энергетических уровней в интервале энергии Е к этому интервалу. Максимальная плотность состояний достигается в центральной части зоны, минимальная – на краях зоны, где существует единственный способ образования полностью разрыхляющих и полностью связующих орбиталей.

Поделиться:
Популярные книги

Циклопы. Тетралогия

Обухова Оксана Николаевна
Фантастика:
детективная фантастика
6.40
рейтинг книги
Циклопы. Тетралогия

Бракованная невеста. Академия драконов

Милославская Анастасия
Фантастика:
фэнтези
сказочная фантастика
5.00
рейтинг книги
Бракованная невеста. Академия драконов

Довлатов. Сонный лекарь 3

Голд Джон
3. Не вывожу
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 3

Вторая невеста Драконьего Лорда. Дилогия

Огненная Любовь
Вторая невеста Драконьего Лорда
Любовные романы:
любовно-фантастические романы
5.60
рейтинг книги
Вторая невеста Драконьего Лорда. Дилогия

Позывной "Князь"

Котляров Лев
1. Князь Эгерман
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Позывной Князь

Поле боя – Земля

Хаббард Рональд Лафайет
Фантастика:
научная фантастика
7.15
рейтинг книги
Поле боя – Земля

Кодекс Крови. Книга ХIII

Борзых М.
13. РОС: Кодекс Крови
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Кодекс Крови. Книга ХIII

Зомби

Парсиев Дмитрий
1. История одного эволюционера
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Зомби

Бестужев. Служба Государевой Безопасности. Книга 5

Измайлов Сергей
5. Граф Бестужев
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга 5

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Никита Хрущев. Рождение сверхдержавы

Хрущев Сергей
2. Трилогия об отце
Документальная литература:
биографии и мемуары
5.00
рейтинг книги
Никита Хрущев. Рождение сверхдержавы

Довлатов. Сонный лекарь 2

Голд Джон
2. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 2

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Адмирал южных морей

Каменистый Артем
4. Девятый
Фантастика:
фэнтези
8.96
рейтинг книги
Адмирал южных морей