Чтение онлайн

на главную - закладки

Жанры

КЭД – странная теория света и вещества
Шрифт:

Можно придумать несколько возможных теорий, объясняющих частичное отражение света от стекла. Одна из них состоит в том, что 96 % поверхности стекла – это «дырки», которые пропускают свет, в то время как остальные 4 % заняты маленькими «пятнышками» отражающего материала (см. рис. 3). Ньютон понимал, что это объяснение не годится [2] . Через минуту мы столкнемся с такой странной особенностью частичного отражения, что она собьет с толку любого сторонника теории «дырок и пятен» – или другой какой-нибудь разумной теории!

2

Откуда он знал? Ньютон был великим человеком, он писал: «Потому что я могу отполировать стекло». Вас может удивить, с чего он взял, что если можно отполировать стекло, то не должно быть дырок и пятен? Ньютон сам шлифовал свои линзы и зеркала и знал, что он делает при шлифовке – царапает поверхность стекла порошками все более тонкого помола. По мере того как царапины становятся все тоньше и тоньше, поверхность стекла меняет свой облик и из матово-серой (так как свет рассеивается большими царапинами) становится прозрачно-ясной (потому что очень тонкие царапины пропускают свет насквозь). Таким образом, он увидел, что невозможно предположить, будто очень мелкие

неровности, вроде царапинок или пятен и дырок, могут влиять на свет. В действительности он обнаружил, что верно обратное. Тончайшие царапинки и, следовательно, такие же маленькие пятнышки не оказывают влияния на свет. Так что теория дырок и пятен не годится.

Рис. 3. Одна из теорий, объясняющих частичное отражение от одной поверхности, предполагает, что поверхность состоит в основном из «дырок», которые пропускают свет, и немногих «пятен», которые отражают свет.

Другая возможная теория состоит в том, что фотоны имеют какой-то внутренний механизм – «колесики» и «шестеренки», которые поворачиваются некоторым образом, – так что когда фотон «нацелен» правильно, он проходит сквозь стекло, а когда неправильно – отражается. Мы можем проверить эту теорию, постаравшись отфильтровать фотоны, нацеленные правильно, при помощи нескольких дополнительных стеклянных пластинок между источником и первым стеклом. После прохождения через фильтры все фотоны, достигшие стекла, должны быть нацелены правильно, и ни один из них не должен отразиться. Эта теория плоха тем, что не согласуется с экспериментом: даже пройдя сквозь много слоев стекла, 4 % фотонов, достигших данной поверхности, отражаются от нее.

Сколько бы мы ни старались изобрести разумную теорию, объясняющую, как фотон «решает», проходить ли ему сквозь стекло или отскакивать назад, предсказать, как будет двигаться данный фотон, невозможно. Философы утверждали, что если одинаковые условия не приводят всегда к одинаковым результатам, предсказания невозможны и наука потерпит крах. Вот условие, которое приводит к различным результатам: одинаковые фотоны летят в одном направлении к одному куску стекла. Мы не можем предсказать, попадет ли данный фотон в А или В. Все, что мы можем предсказать – это то, что из 100 вылетевших фотонов в среднем 4 отразятся от поверхности. Значит ли это, что физику, науку великой точности, свели к тому, чтобы вычислять вероятность события и не предсказывать точно, что произойдет? Да. Так оно и есть. Это отступление. Природа позволяет нам вычислять только вероятности. Но наука не потерпела краха.

Если частичное отражение от одной поверхности – это непостижимая загадка и трудная проблема, то частичное отражение от двух или более поверхностей совершенно ошеломляет. Позвольте показать почему. Поставим второй эксперимент, в котором мы будем измерять частичное отражение света от двух поверхностей. Заменим кусок стекла очень тонкой стеклянной пластинкой со строго параллельными поверхностями и поместим фотоумножители под пластинкой на пути света от источника (см. рис. 4). На этот раз фотоны могут отразиться от передней или задней поверхности и попасть в А; все остальные попадут в В. Мы могли бы ожидать, что передняя поверхность отразит 4 % света, а задняя – 4 % из оставшихся 96 %, т. е. в целом отразится примерно 8 %. Так что мы должны обнаружить, что из каждых 100 фотонов, испускаемых источником, примерно 8 попадут в А.

В действительности в этих тщательно контролируемых лабораторных условиях очень редко 8 из 100 фотонов попадают в А. С некоторыми пластинками мы постоянно получаем 15 или 16 фотонов – вдвое больше ожидаемого результата! Другие пластинки всегда дают 1 или 2 фотона, третьи – 10, а от некоторых свет вообще не отражается! Чем объясняются эти ненормальные результаты? Проверив качество и однородность пластинок, мы обнаруживаем, что они лишь слегка различаются толщиной.

Рис. 4. Эксперимент для измерения частичного отражения света от двух поверхностей стекла. Фотоны могут попасть в фотоумножитель А, отразившись либо от передней, либо от задней поверхности стеклянной пластинки; кроме того, они могут пройти сквозь обе поверхности и попасть в фотоумножитель В. В зависимости от толщины стекла от 0 до 16 фотонов из каждых 100 попадают в фотоумножитель А. Эти результаты представляют трудность для любой разумной теории, включая теорию «дырок и пятен» (см. рис. 3). Оказывается, частичное отражение может быть «погашено» или «усилено» наличием добавочной поверхности.

Чтобы проверить гипотезу, что количество света, отраженного двумя поверхностями, зависит от толщины стекла, проведем серию экспериментов. Начнем с тончайшей пластинки и измерим, сколько фотонов из каждых 100, испущенных источником, достигнут фотоумножителя в А. Затем заменим пластинку чуть более толстой и произведем новые измерения. Повторим эти действия несколько десятков раз. Что мы получим?

В случае самой тонкой пластинки мы получим, что число фотонов, приходящих в А, почти всегда равно нулю, а иногда равно 1. Заменив тончайшую пластинку чуть более толстой, получаем, что количество отраженного света стало больше – ближе к ожидаемым 8 %. Еще несколько замен – и количество фотонов, попадающих в А, начинает превышать 8 %. По мере постепенного утолщения пластинок количество света, отраженного двумя поверхностями, достигает максимума, 16 % (это происходит при толщине в 5 миллионных дюйма), а затем снова понижается до 8 % и далее до нуля. При какой-то определенной толщине пластинки отражения вообще нет. (Попробуйте-ка получить это с пятнами!)

Если дальше продолжать утолщать стекло, частичное отражение будет увеличиваться до 16 % и возвращаться к нулю – этот цикл повторяется снова и снова (рис. 5). Ньютон обнаружил эти колебания и поставил один эксперимент, который мог быть правильно проинтерпретирован, только если число таких колебаний достигало по меньшей мере 34 000 циклов! Сегодня, имея лазеры (которые дают очень чистый монохроматический свет), мы можем отчетливо наблюдать колебания после более чем 100 000 000 повторений. Это соответствует более чем 50-метровой толщине стекла. (В обычной жизни мы не наблюдаем

этого явления, потому что источник, как правило, не является монохроматическим.)

Рис. 5. Результаты эксперимента по тщательному измерению зависимости степени частичного отражения света от толщины стекла демонстрируют явление, называемое «интерференцией». По мере увеличения толщины стекла степень частичного отражения света проходит повторяющийся цикл от 0 до 16 % без признаков затухания

Таким образом, получается, что предсказанные нами 8 % верны лишь в среднем (тогда как в действительности величина регулярно меняется от нуля до 16 %). Это среднее значение верно только дважды в цикле – так стоящие часы показывают правильное время два раза в сутки. Чем можно объяснить эту странную зависимость частичного отражения от толщины стекла? Как может передняя поверхность отражать 4 % света (что доказывается нашим первым экспериментом), если, поместив снизу на нужном расстоянии вторую поверхность, мы можем каким-то образом «выключить» отражение? А поместив эту вторую поверхность на несколько иной глубине, мы можем «усилить» отражение до 16 %! Может ли быть, что задняя поверхность оказывает какое-то влияние или действие на способность передней поверхности отражать свет? А что, если мы добавим третью поверхность?

При наличии третьей или любого другого числа следующих поверхностей количество отражаемого света опять меняется. Получается, что мы с нашей теорией перебираем поверхности одну за другой, не зная, достигли ли мы, наконец, последней. Нужно ли фотону делать то же самое, чтобы «решить», отражаться ли ему от передней поверхности?

У Ньютона было несколько остроумных соображений относительно этой проблемы [3] , но в итоге он понял, что еще не создал удовлетворительной теории.

3

Нам очень повезло, что Ньютон убедил себя в том, что свет состоит из «корпускул»: мы можем увидеть, какой сложный путь должен пройти живой и пытливый ум, пытаясь объяснить явление частичного отражения от двух или большего числа поверхностей. (Тем, кто считал, что свет – это волны, не надо было ломать над этим голову.) Ньютон рассуждал следующим образом. Хотя кажется, что свет отражается от передней поверхности, он не может отражаться от этой поверхности. Если бы он отражался, то каким образом уже отраженный от передней поверхности свет мог бы опять оказаться задержанным, если толщина такова, что отражения не должно быть вообще? Тогда свет должен отражаться от второй поверхности. Но чтобы объяснить тот факт, что толщина стекла определяет степень частичного отражения, Ньютон предложил следующую идею: свет, ударившись о первую поверхность, создает нечто вроде волны или поля, которое движется вместе со светом и предрасполагает его к тому, чтобы отразиться или не отразиться от второй поверхности. Он называл этот процесс «приступами легкого отражения или легкого прохождения», циклически повторяющимися в зависимости от толщины стекла. // В связи с этой идеей возникают две трудности. Первая – это эффект добавочных поверхностей. Каждая новая поверхность влияет на отражение – это я описал в тексте. Другая проблема состоит в том, что свет, безусловно, отражается от озера, у которого нет второй поверхности. Так что свет должен отражаться от передней поверхности. В случае единичных поверхностей Ньютон говорил, что свет имеет предрасположение к тому, чтобы отразиться. Можем ли мы иметь теорию, согласно которой свет знает, в какую поверхность он попадает и единственная ли она? // Ньютон не подчеркивал специально этих противоречий в своей теории «приступов легкого отражения и прохождения», хотя ясно, что он сознавал ее неудовлетворительность. Во времена Ньютона не обращали особого внимания на недостатки теории, их замазывали – стиль отличался от того, к которому мы привыкли в науке сегодня, когда мы указываем на все те места, где наша теория не согласуется с данными эксперимента. Я не пытаюсь обвинить Ньютона. Я просто хочу высказаться в пользу того, как мы обмениваемся информацией в науке сегодня.

На протяжении многих лет после Ньютона частичное отражение от двух поверхностей благополучно объяснялось волновой теорией [4] , но когда провели эксперименты, в которых на фотоумножители светили очень слабым светом, волновая теория потерпела крах. По мере того, как свет становился все более тусклым, фотоумножители продолжали издавать полновесные щелчки – только они раздавались все реже. Свет вел себя как частицы.

Сегодня ситуация такова, что у нас нет хорошей модели для объяснения частичного отражения от двух поверхностей; мы только вычисляем вероятность того, что в данный фотоумножитель попадет фотон, отраженный от стеклянной пластинки. Я выбрал эти вычисления в качестве первого примера, чтобы познакомить вас с методом квантовой электродинамики. Я собираюсь показать вам, «как мы считаем бобы», – что делают физики, чтобы получить правильный ответ. Я не собираюсь объяснять, как фотоны в действительности «решают» вопрос, отскочить ли назад или пройти насквозь. Это неизвестно. (Возможно, вопрос не имеет смысла.) Я только покажу вам, как вычислить правильную вероятность того, что свет отразится от стекла данной толщины, потому что это единственное, что физики умеют делать! То, что нам приходится делать, чтобы решить эту задачу, аналогично тому, что приходится делать, чтобы решить любую другую квантово-электродинамическую задачу.

4

Эта идея основывалась на способности волн взаимно усиливаться или взаимно гаситься, и расчеты в рамках этой модели соответствовали результатам как экспериментов Ньютона, так и экспериментов, проводившихся на протяжении столетий после Ньютона. Но когда были разработаны приборы, достаточно чувствительные, чтобы реагировать на единичный фотон, волновая теория предсказала, что «щелчки» фотоумножителя будут становиться все тише и тише, в то время как они сохраняли полную силу, и только раздавались все более редко. Ни одна разумная модель не могла объяснить этот факт, поэтому наступил период, требовавший известной хитрости. Надо было знать, какой эксперимент вы анализируете, чтобы сказать, что такое свет – волны или частицы. Эта путаница была названа «корпускулярно-волновым дуализмом» света, и кто-то пошутил, что свет представляет собой волны по понедельникам, средам и пятницам; частицы – по вторникам, четвергам и субботам, а по воскресеньям мы думаем об этом. Цель этих лекций – рассказать о том, как эта загадка была в конце концов «разрешена».

Поделиться:
Популярные книги

Неудержимый. Книга XVI

Боярский Андрей
16. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVI

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Архил...? Книга 2

Кожевников Павел
2. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...? Книга 2

Связанные Долгом

Рейли Кора
2. Рожденные в крови
Любовные романы:
современные любовные романы
остросюжетные любовные романы
эро литература
4.60
рейтинг книги
Связанные Долгом

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Искатель 1

Шиленко Сергей
1. Валинор
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Искатель 1

Бестужев. Служба Государевой Безопасности. Книга вторая

Измайлов Сергей
2. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга вторая

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Чародеи. Пенталогия

Смирнов Андрей Владимирович
Фантастика:
фэнтези
7.95
рейтинг книги
Чародеи. Пенталогия

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Попаданка в деле, или Ваш любимый доктор

Марей Соня
1. Попаданка в деле, или Ваш любимый доктор
Фантастика:
фэнтези
5.50
рейтинг книги
Попаданка в деле, или Ваш любимый доктор