Клеймо создателя. Гипотеза происхождения жизни на Земле
Шрифт:
В таблице Б темно-серым выделены позиции маркирующих каждый класс аминокислот. В матрице они симметричны относительно центральной вертикальной колонки. Соответствующие пары аминокислот практически симметричны (равновесны) и по нуклонным массам (72+58 130+1). Посмотрим, как матрица выглядит с точки зрения описанных параметров:
Общие нуклонные суммы симметричных пар столбцов 1-го и 3-го, 2-го и 4-го в матрице кода близки к равенству – или равны (176+320 = 118+378 = 496), если гистидин Н полностью
Приняв за случайность сам децимализм кода, на котором настаивает доктор Щербак, обнаруживаем, однако, что таблица кода в значениях нуклонных масс демонстрирует хорошо организованный набор информационных сигнатур 111 в системах счисления 5—9:
Ярко-зеленым в Таблице 11 отмечены ячейки тех аминокислот, нуклонная масса которых принимает значение 111 в той или иной системе счисления (номер системы счисления принято указывать справа и снизу от числа; номер десятичной системы не указывается). Бледно-зеленым отмечены ячейки тех аминокислот, нуклонная масса которых принимает значение 111 при определенных условиях: сложение нуклонных масс гистидина Н (81+) и триптофана W (+130) дает 211=11114 (других таких смежных пар в матрице нет), нуклонная масса лизина становится 1118 в зарядовой версии этой аминокислоты, а нуклонная масса глицина – это базовый нумерал (цифровой символ) для подобных чисел. Сумма всех закрашенных ячеек матрицы кода составляет 7779.
Если скептически настроенный Читатель готов счесть вс это случайностью, обратимся на время к порядковым параметрам кодируемых аминокислот. В их значениях симетрии матрицы генетического кода приобретают такой вид:
Все три таблицы практически одинаковы. В левой матрица состоит из двух блоков – PSTG\RWME и LQHF\NAVD, симметричных относительно центральной колонки (а также относительно границы между первыми кодонными пуринами и пиримидинами) и равновесных по суммам позиционных номеров (81=81), а также двух «внутренних» (неокрашенных) пар с соотношением сумм 1:2. В центральной эти два блока разделены на две симметричные части каждый (PGRE и LHAD; 37=37) и STWM и QFNV (44=44). В правой таблице попарно соединены «угловые» блоки PIDE и GAHR, симметричные по диагоналям – так что каждая четверка характеризуется суммой 37. В принципе все эти значения можно в какой-то мере, рассматривать, как указание на децимализм генетического кода, на который указывают числа 37 (37*3=111) и «гомодублеты» 44 и 88. Читатель, возможно, найдет в матрице кода и другие симметрии.
Мы же попытались связать симметрии двумерной матрицы с симметриями трехмерного (объемного) тела, геометрическая симметрия которого задавалась бы по определению: в нашем случае, как мы об этом сказали выше, это простейшее платоново тело, тетраэдр. Нам хотелось найти тетраэдр, в котором формальное равновесие (например, равенство кооперативных нуклонных масс граней) сочеталось бы с равновесием по какой-либо из четко определенных функций, например, по принадлежности к синтетазному классу. Принципиально такая возможность возникает, если принять 20 кодируемых аминокислот с их числовыми параметрами за 20 равновеликих сфер-мономеров. Двадцать мономеров тетраэдра делятся на две структурообразующие группы:
инвариантные мономеры (i), т. е. мономеры вершин (v) и центров граней (c), взаимозамена которых сохраняет общую нуклонную массу граней, и
пара «внутренних» мономеров (e) каждого ребра, не входящих в группу (i).
Мы нашли, что весьма простое условие, а именно – зеркальная
(626+629 = 627+628)10, или:
(10.001+10.004=10.002+10.003)5.
Пару i инвариантных мономеров составляют два мономера v и c, кодируемые одной и той же первой буквой, а пару е составляют внутренние мономеры ребра, также кодируемые одной и той же первой буквой; в обоих случаях используются все четыре основания. Поскольку у тетраэдра шесть пар е, а строк в матрице четыре, то две из этих пар (перекрещивающиеся), хотя и следуют указанному принципу, симметричны лишь в общем, пурин-пиримидиновом, формате – при условии принадлежности S и R к группе вырожденности II: T– R (кодирующие дублеты AC– AG) и S– E (кодирующие дублеты AG– GA или RG– RA). Поразительно, но этот простой принцип, иллюстрируемый приведенной ниже матрицей:
сводит число возможных версий трехмерной модели кода к единственной:
Правда, равновесную по граням модель можно также построить, заменив ребра QH и VD на QV и НD и сохранив, таким образом, симметричный рисунок реберных мономеров в составе матрицы, однако, эта версия потребует сделать формулировку принципа сборки тетраэдра более свободной, поскольку наш тетраэдр характеризуется также полной симметрией по граням аминокислот двух арс-классов:на каждую его грань приходится равное (по 5) число мономеров-аминокислот каждого класса.
Других столь же простых условий сборки тетраэдра с нуклонным равенством граней не существует. Также (естественно) не удается сформировать подобный тетраэдр, используя значения порядковых номеров этих мономеров в качестве их альтернативных параметров. Количественная симметрия имеет место только в отношении номеров инвариантных мономеров сплошной последовательности аминокислот (независимой от арс-класса): суммы номеров мономеров вершин полученного тетраэдра и центров его граней равны (и в случае нумерации по нарастанию нуклонной массы составляют замечательное – в контексте этой и предыдущей глав – десятичное число 37).
Инвариантные мономеры и сами по себе обладают целой серией собственных симметрий по первым, вторым и третьим основаниям своих кодонов, что является следствием их положения в составе матрицы кода. Читатель может самостоятельно организовать и проанализировать таблицы, необходимые для демонстрации этих симметрий.
В формате позиционных номеров аминокислот, принадлежащих к тому или другому арс-классу, отметим, что значения колоночных и построчных суммаций матрицы генетического кода имеют весьма замечательный вид: линейное нарастание сумм порядковых номеров центральных колонок, выраженное двух– или трехзначными инфрмационными символами, в комбинации со сдвиговой для трехзначных чисел (или зеркальной для двузначных) симметрией цифр в крайних колонках, а также в строках, соответствующих первым комплементарным основаниям кодонов: