Код креативности. Как искусственный интеллект учится писать, рисовать и думать
Шрифт:
Эти вопросы я задаю себе в начале каждого семестра. Чтобы получить докторскую степень, аспирант-математик должен создать новое математическое построение. Это значит, что он должен придумать нечто такое, что никогда не было сделано до него. Я должен научить аспирантов, как это сделать. Разумеется, до некоторой степени они обучались этой работе и раньше. Решение задач, даже если их ответ уже известен, тоже требует индивидуального творчества.
Подобное обучение совершенно необходимо для последующего прыжка в неизвестное. Повторяя за другими путь, пройденный к величайшим достижениям, мы надеемся создать среду, которая будет способствовать развитию наших собственных творческих способностей. Однако то, что такой прыжок произойдет, далеко не гарантировано. Я не могу
Маргарет Боден признает, что обладать творческим началом не всегда значит быть Шекспиром или Эйнштейном. Она различает, следуя ее терминологии, «творчество психологическое» и «творчество историческое». Многие из нас творят свои личные произведения, делая нечто новое для самих себя, но далеко не новое в историческом контексте. Эти действия Боден и называет моментами психологического творчества. И только путем многократного создания произведений личного творчества можно надеяться в конце концов создать нечто, что другие признают новым и ценным. Историческое творчество – явление редкое, но оно появляется в результате стимулирования творчества психологического.
Моя методика пробуждения в студентах творческого начала основана на тех трех типах творчества, которые выделила Боден. Вероятно, наиболее очевидный путь – исследование. Сначала понять, как мы пришли к нынешнему состоянию вещей, а затем попытаться раздвинуть границы чуть дальше. Это требует глубокого погружения в то, что мы создали до сих пор. Из этого глубинного понимания может возникнуть нечто такое, чего никогда раньше не было. Часто бывает важно внушить студентам, что акт творения очень часто вовсе не похож на Большой взрыв. Он происходит постепенно. Как писал Ван Гог, «великое не создается порывом, а представляет собой цепь постоянно слагающихся малых дел» [15] .
15
В письме к брату Тео 22 октября 1882 г. Цит. по: Ван Гог В. Письма к брату Тео / Пер. П.В. Мелковой. М.: Азбука-классика, 2017.
Вторую стратегию Боден, стратегию комбинаторного творчества, я считаю мощным средством стимулирования новых идей. Я часто советую своим студентам ходить на семинары и читать статьи по темам, которые кажутся не связанными с теми задачами, над которыми они работают. Рассуждения, относящиеся к совершенно другой части математической вселенной, могут войти в резонанс с решаемой задачей и привести к возникновению свежих идей. Некоторые из наиболее интересных творческих проектов в современной науке реализуются именно на стыке разных дисциплин. Чем больше мы выходим за пределы своих изолированных участков и делимся с другими своими мыслями и затруднениями, тем более творческой может стать наша работа. Именно здесь получают множество быстрых результатов.
На первый взгляд кажется, что творчество преобразующее трудно использовать в качестве стратегии. Но, повторюсь, задача заключается в проверке существующего положения вещей путем отказа от некоторых ранее установленных ограничений. Нужно попытаться понять, что случится, если изменить одно из основополагающих правил, которые мы привыкли считать частью самой сути рассматриваемого предмета. Такие моменты опасны, потому что этим можно обрушить всю систему, но именно это обстоятельство подводит меня к одной из самых важных составляющих, стимулирующих творчество, – готовности к неудачам.
Если вы не готовы к неудачам, вы не пойдете на риск, который позволил бы вам открыть и создать нечто радикально новое. Именно
Можно ли воплотить эти стратегии в программном коде? В использовавшемся в прошлом нисходящем подходе к программированию было очень мало надежды на проявление творческого начала в результатах работы программы. То, что выдавали созданные программистами алгоритмы, никогда не бывало слишком удивительным для их авторов. Не оставалось возможностей ни для экспериментов, ни для неудач. Но недавно все это изменилось: алгоритм, построенный на коде, который учится на собственных ошибках, сделал нечто новое, ошарашившее его создателей и оказавшееся невероятно ценным. Этот алгоритм победил в игре, которую, по мнению многих, машина в принципе не могла освоить. Игра эта требует творческого подхода.
Именно известие об этом революционном событии и стало причиной моего недавнего экзистенциального кризиса как математика.
3
На старт, внимание… го!
Мы все конструируем и конструируем,
но интуиция все равно полезна.
Математику часто сравнивают с игрой в шахматы. Между этими двумя занятиями, несомненно, есть связи, но, когда компьютер Deep Blue обыграл лучшего гроссмейстера, какого человечество смогло выставить против него в 1997 году, это не привело к закрытию математических факультетов. Хотя шахматы – хорошая аналогия формального аспекта построения доказательства, есть еще одна игра, по мнению математиков, гораздо более близкая к творческой и интуитивной стороне занятий математикой. Речь идет о китайской игре го [16] .
16
Принятое в русском языке название «го» (как и названия go/Go, используемые во многих европейских языках) происходит от японского названия игры – и-го. По-китайски она называется вэйци, буквально «облавные шашки». Последнее название часто встречается в русских переводах китайской литературы.
Я впервые познакомился с го, когда был старшекурсником и приехал на математический факультет Кембриджского университета, чтобы выяснить, смогу ли поступить в аспирантуру в поразительную группу, которая участвовала в завершении классификации конечных простых групп, своего рода «периодической таблицы симметрий». Пока я беседовал о будущем математики с Джоном Конвеем и Саймоном Нортоном, входившими в число архитекторов этого великого проекта, меня все время отвлекали сидевшие за соседним столом студенты, которые яростно припечатывали к большой сетке размером 19 x19 линий, вырезанной на деревянной доске, черные и белые камни.
В конце концов я спросил Конвея, чем это они занимаются. «Это го – самая древняя игра из тех, в которые играют до сих пор». В отличие от шахмат с их воинственным характером, объяснил он, го – игра территориальная. Игроки поочередно ставят на сетку размером 19 x19 линий белые и черные шашки – «камни». Если вам удается окружить своими камнями группировку камней противника, его камни становятся вашими. Побеждает игрок, которому к концу партии удалось захватить большее число камней. Казалось, все довольно просто. Тонкость этой игры, объяснил Конвей, заключается в том, что, пытаясь окружить противника, нужно в то же время не дать ему окружить ваши собственные камни.