Комплект книг: Мозг и бизнес / Факт-карты для бизнеса. Эффективный инструмент решения задач / Стратегическое мышление в бизнесе. Технология «Векторное кольцо»
Шрифт:
Отсюда мозг даёт команды нашему организму, какие гормоны выбросить в кровь, чтобы она забурлила для реализации тех самых интенций, от защиты и нападения до секса и власти (рис. 4).
Рисунок 4
Основные отделы лимбической системы
Наконец, здесь же, в подкорке, находится и гиппокамп – изящное анатомическое образование, напоминающее
Гиппокамп – одна из немногих областей мозга, где на протяжении всей нашей жизни происходит нейрогенез. Проще говоря, если в большинстве своём нервные клетки и в самом деле не восстанавливаются, то вот здесь – в гиппокампе – новые появляются постоянно.
Объясняется это достаточно просто: задача гиппокампа – хранить воспоминания, а точнее – знания о пережитом нами опыте. Это, конечно, чрезвычайно важно для наших с вами инстинктов, которые учатся на своих достижениях и ошибках.
Сами воспоминания хранятся выше – на «третьем этаже» нашего мозга, в его коре, а клетки гиппокампа выполняют роль своеобразных тегов. Они хранят не сами воспоминания, а, можно сказать, память о памяти на то или иное событие. Детализировать же, раскрашивать и перевирать наши воспоминания будет уже кора головного мозга.
Поскольку всё это богатство страстей, воспоминаний и интенций надо как-то объединять и синтезировать, в лимбическую систему, кроме подкорковых ядер, входит также и так называемая поясная кора, которая является своеобразной шапкой из кортикального слоя, надетой на нашу подкорку.
Можно сказать, что если первый этаж нашего мозга отвечает за уровень психической энергии, то второй за направление – на что мы её будем тратить: станем бороться за власть и социальное доминирование, или за деньги, чтобы снизить уровень тревоги, или за сексуальных партнёров?
Вопрос это, как вы понимаете, весьма и весьма объемный, серьезный, я бы даже сказал – принципиальный. Поэтому нашим базовым биологическим потребностям мы посвятим вторую главу этой книги, а пока поднимемся этажом выше.
Третий этаж нашего мозга – это неокортекс, или, проще говоря, кора головного мозга.
На первых двух этажах, как вы уже могли видеть, нейроны собраны в ядра, и у каждого из них есть определённый, специфический набор функций. Кора же больших полушарий – это огромная, по сути, единая нейронная сеть.
Нейроны коры головного мозга с помощью локальных связей объединяются в кортикальные колонки. Но есть у них и очень длинные, протяжённые отростки, с помощью которых сообщаются разные области нашего мозга.
Кортикальная колонка – это, можно сказать, универсальный модуль коры головного мозга, структурная единица серого вещества, а связи между разными областями мозга – это уже белое вещество мозга.
Длинными отростками белого вещества связаны друг с другом, например, полушария головного мозга (мозолистое тело) или префронтальная кора со зрительной – первая находится в области
Рисунок 5
Слева кортикальные колонки – структурные единицы коры головного мозга, а справа изображение нейронных связей, объединяющих удалённые участки мозга друг с другом
Основной объём полушарий нашего мозга – это вовсе не тела «серых клеточек», а их вытянутые отростки, тянущиеся в разные стороны – так называемое белое вещество мозга (рис. 6). При этом большая часть коры головного мозга выполняет достаточно рутинные функции, в частности – создаёт ту самую модель воспринимаемого нами мира и контролирует наши движения в нём.
Рисунок 6
Белое и серое вещество мозга
Лишь префронтальная кора – это та область мозга, где мы более-менее сознательно простраиваем маршруты на той карте мира, которая создаётся мозгом в его задних отделах.
Сеть, сети, сеточки
Долгое время, рассказывая о мозге, учёные описывали лишь отдельные его анатомические образования. Тут, мол, миндалевидное тело, оно отвечает за страх и агрессию, а тут зрительная область, она отвечает за зрение. Тут центры речи, они отвечают за понимание речи и генерацию высказываний и т. д.
Но теперь о мозге и его коре говорят совсем иначе. И объясняется это настоящей революцией, которую произвели в науке о мозге новые методы его исследования – функциональная магнитно-резонансная томография (фМРТ), позитронно-эмиссионная томография (ПЭТ), диффузионно-тензорная магнитно-резонансная томография (ДТ МРТ) и т. д.
Ещё совсем недавно изучать мозг можно было либо мёртвым, препарируя его на анатомическом столике, либо во время нейрохирургических операций, когда, прямо скажем, особо не до науки – выжил бы пациент, и то хорошо.
Ещё существует метод электроэнцефалографии (ЭЭГ), который позволяет снять показатели электрической активности с поверхности головы. Но у этого метода достаточно ограниченные возможности.
С появлением же магнитно-резонансной томографии мы получили возможность заглянуть в живой, работающий мозг. Причём мы можем даже давать ему задания и следить за тем, как он их выполняет.
В общем, день и ночь. Вопрос в том, что этот «день» нам дал. Мы увидели, что мозг состоит не из анатомических образований, а из несметного числа различных нейронных сетей, которые связывают в мозге буквально всё со всем.