Космические двигатели будущего
Шрифт:
Преимуществом такого типа холодильника-излучателя является его полная неуязвимость к поражению метеоритами, а также малые размеры при транспортировке энергоустановки с поверхности Земли на орбиту спутника, так как при этом пыль может находиться в малогабаритном контейнере. В настоящее время эта схема находится еще в стадии теоретических проработок. Ее реализация сдерживается отсутствием легких и экономичных источников магнитного поля.
Импульсные двигатели на микровзрывах и фотонный двигатель. Принцип действия импульсных ядерных ракетных двигателей (ИЯРД), схемы которых приведены на рис. 7, а и б, заключаются
Обычно в таких двигателях в результате воздействия взрыва испаряется либо материал отражателя, либо рабочее тело, подаваемое на поверхность отражателя. Кроме того, для улучшения условий протекания ядерной реакции, увеличения доли прореагировавших атомов и уменьшения температуры взрыва ядерный заряд заключают в достаточно толстую оболочку пассивного вещества. В результате отбрасываемая масса будет состоять в основном из веществ, не принимающих участие в реакции (водород, литий и др.), и скорость истечения в таких двигателях ограничена 100 км/с.
Если будут найдены удовлетворительные технические решения для охлаждения отражателя без испарения его материала и удастся осуществить ядерную реакцию без образования оболочки, окружающей заряд, то скорости истечения в таких двигателях могут приблизиться к теоретически возможным величинам — 105 км/с. При этом ИЯРД будут иметь меньшую удельную массу, чем электрические двигатели, ибо доля отводимого тепла у них будет существенно меньше (для электрических двигателей она составляет 75–90 % от мощности ядерной установки), а теплообмен можно осуществлять при более высокой температуре. В результате площадь и соответственно масса холодильника-излучателя будут существенно меньше.
Рис. 7. Схемы импульсных двигателей (а — на трансурановых элементах, б — термоядерный двигатель): 1 — космический корабль, 2 — демпфер, 3 — система подачи ядерного горючего, 4 — отражатель, 5 — зона взрыва, 6 — система преобразования энергии, 7 — обмотка для создания магнитного поля, 8 — система поджига реакции (ускорители заряженных частиц или лазеры)
Для ядерных реакций деления основной проблемой является сокращение массы ядерного горючего, необходимой для самоподдерживающейся ядерной реакции (критическая масса). Для широкоиспользуемого в настоящее время ядерного горючего из урана-235 и плутония критическая масса настолько велика (скажем, 1 и 3 кг), что из-за слишком большой энергии, выделяемой при взрыве такой массы, исключается прямое применение этих элементов в ИЯРД.
Существенно уменьшить критическую массу можно либо увеличивая плотность делящегося вещества путем его сжатия давлением в 1014 — 1015 Па, либо переходя к химическим элементам с большими ядерными массами — трансурановым элементам. Современная техника позволяет создавать импульсные давления требуемой величины, но это возможно лишь при использовании сложных и тяжелых устройств, которые более целесообразно применить для реакций синтеза. Поэтому в качестве горючего в ИЯРД деления могут быть использованы лишь трансурановые
Критическая масса калифорния равна примерно 7 г, и при взрыве такой массы выделяется 1010 Дж. Схема двигателя с использованием калифорния приведена на рис. 7, а. В ней с помощью специальных ускорителей, расположенных на периферии отражателя, выстреливаются частицы калифорния, которые одновременно, сталкиваясь, образуют в сумме критическую массу, инициируя ядерный взрыв. Причем за счет сжатия, возникающего при столкновении частиц, критическая масса может быть уменьшена в 1,5–2 раза. Взрывы повторяются до тех пор, пока ракета не наберет нужную скорость: для разгона ракеты с конечной массой 100 т до скорости 10 км/с нужно несколько килограмм калифорния.
Однако двигатели с использованием трансурановых элементов при всей их принципиальной простоте обладают рядом существенных недостатков и едва ли могут быть осуществлены в ближайшее время. Калифорний очень дорог, он отсутствует в природе и его получают облучением тяжелых элементов в протонных ускорителях или мощными нейтронными потоками. При этом полезный выход калифорния очень мал, и, например, производство калифорния в США в 60-х годах составляло всего около 1 г в год. Поскольку период полураспада калифорния-252 составляет 2,5 года, то при таком уровне производства вообще невозможно накопить критическую массу.
И наконец, если нужное количество калифорния будет получено, то хранить его на ракете возможно лишь в виде малых частиц, разделенных большим количеством поглотителя нейтронов, что увеличивает массу двигателя. Кроме того, при взрыве трансурановых элементов образуются тяжелые осколки деления, которые трудно задержать магнитным полем отражателя, и большое количество нейтронов, практически не взаимодействующих с магнитным полем. В результате охлаждение конструкции двигателя становится трудноразрешимой проблемой.
Запас калифорния можно несколько сократить, если в зону взрыва через интервал времени 10–6 — 10–5 с подавать уран примерно в тех же количествах, что и калифорний. При этом в нейтронном потоке, созданном взрывом калифорния, будет происходить выгорание урана. Затем через такой же интервал времени можно подать следующую порцию урана. Таким образом будет организована каскадная реакция, но она является затухающей и после 3–5 циклов необходимо вновь взрывать калифорний.
Более перспективным может быть использование калифорния для инициирования термоядерной реакции. При этом калифорний применяется только один раз, а потом в зону реакции непрерывно подаются порции термоядерного горючего (например, дейтерий-тритиевой смеси). Термоядерное горючее несравнимо дешевле калифорния и экономические факторы не будут играть столь существенной роли при разработке такого двигателя. Кроме того, при термоядерной реакции образуются легкие элементы, что значительно упрощает тепловую защиту отражателя.
Однако, если даже отвлечься от проблемы подачи термоядерного горючего в зону горения, то минимальный уровень непрерывной мощности для осуществления этой самоподдерживающейся реакции составит 1014 Вт. Это более чем в 1000 раз превосходит мощность двигателей ракеты «Сатурн-5». При скорости истечения 103 км/с такой двигатель будет иметь тягу 10 000 тс. И, следовательно, проблемы теплоотвода при требуемом уровне мощности становятся чрезвычайно трудноразрешимыми. Если допустить, что в элементах конструкции двигателя выделяется всего 0,1 % энергии, то и для отвода такого количества потребуется холодильник-излучатель площадью 10 000 м2.
Запечатанный во тьме. Том 1. Тысячи лет кача
1. Хроники Арнея
Фантастика:
уся
эпическая фантастика
фэнтези
рейтинг книги
Старая дева
2. Ваш выход, маэстро!
Фантастика:
фэнтези
рейтинг книги
Наследник 2
2. Старицкий
Фантастика:
попаданцы
альтернативная история
фэнтези
рейтинг книги
Лейб-хирург
2. Зауряд-врач
Фантастика:
альтернативная история
рейтинг книги
Крещение огнем
5. Ведьмак
Фантастика:
фэнтези
рейтинг книги
Мастер Разума III
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
рейтинг книги
Охотник за головами
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
рейтинг книги
Адвокат вольного города 7
7. Адвокат
Фантастика:
городское фэнтези
альтернативная история
аниме
фантастика: прочее
рейтинг книги
Прометей: каменный век II
2. Прометей
Фантастика:
альтернативная история
рейтинг книги
Пустоцвет
Любовные романы:
современные любовные романы
рейтинг книги
Я еще не князь. Книга XIV
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
рейтинг книги
Город драконов
1. Город драконов
Фантастика:
фэнтези
рейтинг книги
Взлет и падение третьего рейха (Том 1)
Научно-образовательная:
история
рейтинг книги
