Космические методы в океанологии
Шрифт:
По оценкам многих специалистов, в ближайшем будущем реально ожидать повышения точности в определении температуры океанской поверхности с помощью установленных на ИСЗ радиометров до величин 0,2 - 0,5 К. Пространственное разрешение получаемой при этом информации будет порядка нескольких сот метров, а периодичность ее получения - до нескольких раз в сутки. С учетом таких перспектив радиометры инфракрасного диапазона планируется устанавливать на всех разрабатываемых океанологических ИСЗ.
В настоящее время успешно идут эксперименты по созданию инфракрасных лазеров (например, газовых лазеров, работающих на углекислом газе и имеющих излучение с длиной волны 10,6 мкм). С помощью этих приборов,
В заключение этого раздела отметим, что информация инфракрасного, как и видимого, диапазона, получаемая даже в глобальном масштабе, имеет фрагментарный характер из-за покрытия многих районов Мирового океана плотной облачностью и туманом. Глобальное изучение океана без пропусков возможно только при использовании волн радиодиапазона.
РАДИОФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ОКЕАНА ИЗ КОСМОСА
Радиофизические методы исследования Мирового океана из космоса, включая и исследования атмосферы над океаном, проводятся в микроволновом или, иначе говоря, в сверхвысокочастотном (СВЧ) диапазоне спектра на радиоволнах с длиной от нескольких миллиметров до нескольких дециметров. Формирование собственного теплового излучения океана или отраженного его поверхностью определяется в радиодиапазоне обширным комплексом гидрофизических параметров, что позволяет в ряде случаев получать информацию, которую трудно или просто невозможно добыть при зондировании океана в оптическом диапазоне спектра.
Прозрачность земной атмосферы в радиодиапазоне велика, причем относительно прозрачна даже облачная атмосфера. Это позволяет с помощью радиометодов проводить исследования там, где трудно или просто невозможно использовать оптические методы. Конечно, в той или иной мере атмосфера Земли и в этом диапазоне влияет на излучение поверхности океана, регистрируемое на борту КА, однако в ряде случаев это влияние невелико и его можно учесть. По сравнению с видимым и инфракрасным диапазонами спектра, влияние атмосферы в радиодиапазоне значительно меньше, и передаточная функция атмосферы значительно ближе к единице.
Так, по данным одной из экспериментальных работ, выполненных советскими учеными, в области длин волн около 0,8 см совершенно непрозрачный для волн оптического диапазона плотный слой кучевых облаков толщиной около 1,5 км над акваторией Азовского моря приводил к изменению так называемой радиояркостной температуры морской поверхности на 20 - 25 К. При переходе же к волнам с длиной волны 3,2 см вклад атмосферы еще более уменьшался, и ошибка измерения радиояркостной температуры моря, определяемая атмосферой, уменьшалась до 3 К, т. е. не превышала 1 - 2 %.
Общая тенденция здесь такова: более длинноволновое излучение океана свободнее проходит сквозь атмосферу, не ослабевая, и его целесообразней использовать при изучении Мирового океана из космоса. В то же время исследования в коротковолновой миллиметровой области спектра позволяют судить о водности облаков в приводном слое атмосферы, определять количество водяного пара, выделять районы осадков и решать другие задачи, связанные с комплексным исследованием процессов, протекающих в системе океан - атмосфера.
Кроме того, при выборе рабочего диапазона частот необходимо учитывать, что при использовании на борту ИСЗ одних и тех
В космической океанологии при использовании волн радиодиапазона нашли широкое применение оба метода дистанционного зондирования - активный и пассивный. Активный метод исследования Мирового океана из космоса основан на использовании известных принципов и методов радиолокации, а пассивный - на регистрации собственного теплового радиоизлучения океанских вод с помощью чувствительных СВЧ-радиометров.
Современные спутниковые СВЧ-радиометры позволяют с высокой точностью определять излучение океана одновременно на нескольких длинах волн и на двух видах линейной поляризации: горизонтальной и вертикальной. Строго говоря, принимаемый этими устройствами поток радиоизлучения Земли состоит из следующих основных слагаемых: потока излучения слоя атмосферы, расположенного между поверхностью и КА; потока излучения атмосферы, отраженного земной поверхностью, и потока излучения подстилающей поверхности, ослабленного поглощением в атмосфере. Для нужд космической океанологии интерес представляет, естественно, только третье слагаемое, а первые два являются помехами.
Еще первые, проведенные с использованием самолетов-лабораторий, эксперименты показали, что степень влияния различных океанологических параметров на интенсивность излучения (или, что то же самое, на радиояркостную температуру) океанской поверхности сильно зависит от длины волн. Кроме того, излучение океанской поверхности зависит и от угла, под которым ведется наблюдение. Результирующая информация, как правило, зависит одновременно от многих океанологических параметров, и поэтому чтобы точно и эффективно решать задачи космической океанологии, необходимо использовать многочастотные и поляризационные измерения, позволяющие разделять различные составляющие и определять все интересующие океанологические параметры.
Например, при исследовании нефтяного загрязнения Мирового океана используется то, что радиояркостная температура поверхности океана, покрытой нефтяной пленкой, выше яркостной температуры чистой воды. На волнах с длиной волны 10 см увеличение яркостной температуры примерно пропорционально толщине пленки и равно 1 К на 1 мм толщины пленки, что близко к величине чувствительности современных радиометров. Следовательно, такие пленки с помощью радиометодов могут быть надежно идентифицированы. При переходе в коротковолновую область, в область длин волн несколько миллиметров, возрастание радиояркостной температуры загрязненной поверхности достигает уже нескольких десятков градусов, т. е. еще более заметно.
Основой дистанционных измерений термодинамической температуры поверхностного слоя океана в СВЧ-диапазоне является то, что радиояркостная температура пропорциональна термодинамической. В диапазоне длин волн 8 - 10 см влияние атмосферы и других помех минимально, и поэтому этот диапазон волн наилучшим образом подходит для температурных измерений.
Используемая в радиометрии радиояркостная температура связана с обычной термодинамической температурой через коэффициент радиоизлучения морской воды. Величина этого коэффициента очень сильно изменяется в зависимости от условий наблюдения и от многих гидрометеорологических параметров. Излучательная способность воды для многих углов наблюдений значительно меньше единицы и сильно зависит от степени поляризации используемых радиоволн.