Чтение онлайн

на главную - закладки

Жанры

Космические рубежи теории относительности
Шрифт:

В XIX в. Риман заинтересовался возможностью описывать тяготение посредством кривизны пространства. Однако, несмотря на все усилия, этот одаренный математик не добился успеха, так как учитывал только кривизну пространства. Но у Эйнштейна хватило проницательности физика для того, чтобы связать тяготение с геометрией посредством кривизны пространства-времени. Иными словами, «неувязка» в описанной теннисной игре произошла потому, что траектории мяча рассматривались только в пространстве, а не в пространстве-времени. Чтобы разобраться в пространственно-временном ходе игры в теннис, нужно построить трёхмерные пространственно-временные диаграммы. По одной оси мы будем откладывать положение мяча в горизонтальном направлении. Всего по горизонтали мяч пролетает в обоих случаях по 10 м. По другой оси мы будем откладывать высоту мяча над поверхностью площадки. Пущенный свечой

мяч поднимается на высоту 8 м, тогда как прямой удар посылает его лишь на несколько сантиметров выше сетки. По третьей оси мы будем откладывать время, которое займут полёты теннисного мяча. Летя свечой, мяч затрачивает на путь между двумя игроками много времени, тогда как на полёт при прямом ударе требуется гораздо более короткий промежуток. Получившийся график приведен на рис. 4.22.

РИС. 4.22. Игра в теннис (в пространстве-времени). Если рассматривать мировые линии теннисного мяча в пространстве-времени, то они кажутся одинаковыми.

Если внимательно разобрать оба случая, то окажется, что в пространстве-времени эти мировые линии по сути дела одинаковы. Обе они близки к дугам окружностей, каждая из которых имеет диаметр около двух световых лет. Хотя траектории теннисного мяча выглядят очень неодинаково в пространстве, эти пути в пространстве-времени выглядят одинаково. Конечно, прямой удар приводит мяч к цели быстрее, чем полёт свечой. Поэтому мировая линия прямого полёта и в пространстве-времени короче, чем мировая линия свечи. Однако обе они - дуги одной и той же окружности. Это одна и та же геодезическая.

Рассмотренная нами игра в теннис иллюстрирует и ещё один важный момент. Десятиметровая дуга окружности диаметром в два световых года - это почти прямая линия. Другими словами, геодезические для предметов, движущихся в гравитационном поле Земли, практически неотличимы от обычных прямых в пространстве-времени. Это означает в свою очередь, что пространство-время около Земли почти идеально плоское. С точки зрения общей теории относительности гравитационное поле Земли следует поэтому считать очень слабым. Поэтому на Земле очень трудно произвести эксперименты (равно как и вообще в Солнечной системе), которые помогли бы обнаружить это очень малое искривление пространства-времени. Проверка правильности общей теории относительности - это очень трудная задача, стоящая перед физиками и астрономами.

5

ЭКСПЕРИМЕНТЫ В ОБЩЕЙ ТЕОРИИ ОТНОСИТЕЛЬНОСТИ

Труды Исаака Ньютона в течение двухсот лет сохраняли свою роль краеугольного камня неколебимых основ классической механики. Практически всё удавалось объяснить представлением о тяготении как о силе. Благодаря тяготению вы могли сидеть на стуле. Тяготение удерживало Луну на её орбите около Земли. Та же сила тяготения поддерживала целостность Солнечной системы и определяла взаимодействие между звёздами и галактиками.

Успехи ньютоновской механики неизменно умножались на протяжении сотен лет. В 1705 г. Эдмунд Галлей опубликовал свои расчёты орбит 24 комет. Он обнаружил, что орбиты ярких комет, наблюдавшихся в 1531, 1607 и 1682 гг., были настолько близки друг к другу, что это могла быть на самом деле одна и та же сильно вытянутая эллиптическая орбита с фокусом в Солнце. Развивая труды Галлея, Алексис Клеро предсказал возвращение этой кометы в 1758 г. И действительно, её увидели тогда в ночь на Рождество; эта комета получила название кометы Галлея (рис. 5.1). Воспользовавшись законами Ньютона, карандашом и бумагой, астрономы открыли нового постоянного члена Солнечной системы.

РИС.5.1. Комета Галлея. На основе ньютоновской механики астрономы в XVIII в. обнаружили, что эта комета является постоянным членом Солнечной системы. Период обращения кометы Галлея вокруг Солнца составляет около 76 лет, и она должна снова вернуться к Солнцу в 1986 г. (Ликская обсерватория.)

С начала XIX в. астрономы стали открывать малые планеты – астероиды,обращающиеся

вокруг Солнца между орбитами Марса и Юпитера. 1 января 1801 г. сицилийский астроном Джузеппе Пиацци обнаружил Цереру; в марте 1802 г. Генрих Ольберс нашёл второй астероид, Палладу. Затем последовали открытия Юноны в 1804 г. и Весты - в 1807 г. В каждом случае орбиты астероидов в точности соответствовали теории Ньютона

В 1840-х годах Джон Коуч Адамс в Англии и Урбен Жан Жозеф Леверье во Франции независимо друг от друга пришли к заключению, что наблюдаемые отклонения в движении Урана могут быть объяснены существованием в Солнечной системе восьмой планеты. Как было рассказано в предыдущей главе, их вычисления привели к открытию Нептуна. Это был новый триумф ньютоновской механики.

РИС. 5.2. Меркурий. К середине XIX в. астрономы убедились, что Меркурий не движется точно по той орбите, которая предсказывается ньютоновской теорией. Хотя эти аномалии движения почти незаметны, движение Меркурия не поддаётся объяснению в рамках классической физики. (НАСА.)

Однако, несмотря на множество успехов, у ньютоновского закона тяготения было одно слабое место. Начиная с 1859 г. Леверье отметил, что Меркурий (рис. 5.2) не следует в точности по предвычисленной орбите. Как говорилось в предыдущей главе, все попытки объяснить аномалии в проведении Меркурия в рамках механики Ньютона оказались неудачными.

Следует подчеркнуть, что отклонения движения Меркурия от теории весьма незначительны. Согласно классической теории (т.е. теории Ньютона, Кеплера и т.п.), орбита одной отдельно взятой планеты должна быть идеальным эллипсом с Солнцем в одном из фокусов. Однако в Солнечной системе помимо Меркурия есть и другие планеты. Эти планеты тоже притягивают Меркурий, хотя и слабо, что приводит к незначительным отклонениям его орбиты от идеального эллипса. Это отклонение называется возмущением орбиты Меркурия. Пользуясь законом тяготения Ньютона, астрономы могли рассчитать точную величину этих возмущений. И уже на протяжении многих лет знали, что орбита Меркурия должна медленно поворачиваться под действием возмущений со стороны всех других планет. Однако наблюдаемая скорость поворота орбиты оказалась заметно больше, чем предсказывала теория Ньютона.

РИС. 5.3. Движение перигелия Меркурия. Положение перигелия орбиты Меркурия смещается за столетие вперёд по ходу его движения на 1°33'20". Большая часть этого смещения (1°32'37") поддаётся объяснению как результат возмущений со стороны других планет.

Чтобы лучше понять проблему, мучившую астрономов сто лет назад, рассмотрим какую-либо определённую точку на орбите Меркурия, скажем, точку, в которой Меркурий оказывается ближе всего к Солнцу. Её называют перигелием; если смотреть с Земли, она занимает определённое положение на небе. Так как орбита Меркурия очень медленно поворачивается, то почти эллиптическая траектория планеты вокруг Солнца постепенно меняет свою ориентацию. В результате очень медленно смещается и положение перигелия Меркурия. Этот эффект так мал, что за целых сто лет перигелий Меркурия поворачивается лишь на 1°33'20", как показано на рис. 5.3. Из этого наблюдаемого полного поворота теория Ньютона может объяснить только поворот на 1°32'37" за столетие. Остаётся избыточное движение перигелия, равное 43 секундам дуги за столетие, которое нельзя отнести за счет эффектов классической ньютоновской теории. Хотя такое расхождение весьма мало, к началу XX в. стало ясно, что классическая механика не может полностью объяснить особенности движения ближайшей к Солнцу планеты.

В 1916 г. Эйнштейн предложил принципиально новую теорию тяготения, названную общей теорией относительности. Согласно этой новой теории, гравитационное поле объекта проявляется как искривление пространства-времени. Чем сильнее гравитационное поле, тем больше кривизна пространства-времени. Частицы и световые лучи распространяются по кратчайшим мировым линиям в таком искривлённом пространстве-времени - по геодезическим.

Поделиться:
Популярные книги

Эволюционер из трущоб

Панарин Антон
1. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб

Дикая фиалка заброшенных земель

Рейнер Виктория
1. Попаданки рулят!
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Дикая фиалка заброшенных земель

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла

Вторая жизнь майора. Цикл

Сухинин Владимир Александрович
Вторая жизнь майора
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Вторая жизнь майора. Цикл

Кротовский, не начинайте

Парсиев Дмитрий
2. РОС: Изнанка Империи
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Кротовский, не начинайте

Герцог и я

Куин Джулия
1. Бриджертоны
Любовные романы:
исторические любовные романы
8.92
рейтинг книги
Герцог и я

Треугольная шляпа. Пепита Хименес. Донья Перфекта. Кровь и песок.

Бласко Висенте Ибаньес
65. Библиотека всемирной литературы
Проза:
классическая проза
5.00
рейтинг книги
Треугольная шляпа.
Пепита Хименес.
Донья Перфекта.
Кровь и песок.

Голодные игры

Коллинз Сьюзен
1. Голодные игры
Фантастика:
социально-философская фантастика
боевая фантастика
9.48
рейтинг книги
Голодные игры

Опасная любовь командора

Муратова Ульяна
1. Проклятые луной
Фантастика:
фэнтези
5.00
рейтинг книги
Опасная любовь командора

70 Рублей - 2. Здравствуй S-T-I-K-S

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
70 Рублей - 2. Здравствуй S-T-I-K-S

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Переиграть войну! Пенталогия

Рыбаков Артем Олегович
Переиграть войну!
Фантастика:
героическая фантастика
альтернативная история
8.25
рейтинг книги
Переиграть войну! Пенталогия

Кодекс Охотника. Книга XXI

Винокуров Юрий
21. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXI